Some reflection principles at large continuum

André Ottenbreit Maschio Rodrigues a joint work with Sakaé Fuchino and Hiroshi Sakai

Kobe University

November 8, 2018

1 Stationary Logic and reflection principles

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つへ⊙

Definition (WRP)

For every regular $\eta \geq \aleph_2$, every stationary $S \subseteq [\eta]^{\aleph_0}$ and every $X \in [\eta]^{\aleph_1}$, there is $Y \in [\eta]^{\aleph_1}$ such that **1** $X \subseteq Y$; **2** $S \cap [Y]^{\aleph_0}$ is stationary in $[Y]^{\aleph_0}$.

(in Jech's book, this principle is called just RP) WRP imposes the following boundary for the size of the continuum:

```
Theorem (Todorčević)
```

```
WRP implies 2^{\aleph_0} \leq \aleph_2.
```

Definition (WRP)

For every regular $\eta \geq \aleph_2$, every stationary $S \subseteq [\eta]^{\aleph_0}$ and every $X \in [\eta]^{\aleph_1}$, there is $Y \in [\eta]^{\aleph_1}$ such that **1** $X \subseteq Y$; **2** $S \cap [Y]^{\aleph_0}$ is stationary in $[Y]^{\aleph_0}$.

(in Jech's book, this principle is called just RP) WRP imposes the following boundary for the size of the continuum:

```
Theorem (Todorčević)WRP implies 2^{\aleph_0} \leq \aleph_2.
```

- WRP is consistent with CH, because it holds if we Levy collapse a supercompact cardinal to ℵ₂.
- WRP is also compatible with \neg CH since WRP follows from MM, and MM $\Rightarrow 2^{\aleph_0} = \aleph_2$.
- Now we present a characterization of WRP:

WRP is equivalent to the following statement: For any uncountable cardinal η , any stationary $S \subseteq [\mathcal{H}(\eta)]^{\aleph_0}$ and any structure $\mathfrak{A} = \langle \mathcal{H}(\eta), \in, \ldots \rangle$ in signature of size $\leq \aleph_1$, there is $M \in [\mathcal{H}(\eta)]^{\aleph_1}$ such that 1 $\mathfrak{A} \upharpoonright M \prec \mathfrak{A}$; 2 $S \cap [M]^{\aleph_0}$ is stationary in $[M]^{\aleph_0}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- WRP is consistent with CH, because it holds if we Levy collapse a supercompact cardinal to ℵ₂.
- WRP is also compatible with \neg CH since WRP follows from MM, and MM $\Rightarrow 2^{\aleph_0} = \aleph_2$.
- Now we present a characterization of WRP:

WRP is equivalent to the following statement: For any uncountable cardinal η , any stationary $S \subseteq [\mathcal{H}(\eta)]^{\aleph_0}$ and any structure $\mathfrak{A} = \langle \mathcal{H}(\eta), \in, \ldots \rangle$ in signature of size $\leq \aleph_1$, there is $M \in [\mathcal{H}(\eta)]^{\aleph_1}$ such that 1 $\mathfrak{A} \upharpoonright M \prec \mathfrak{A}$; 2 $S \cap [M]^{\aleph_0}$ is stationary in $[M]^{\aleph_0}$.

- WRP is consistent with CH, because it holds if we Levy collapse a supercompact cardinal to ℵ₂.
- WRP is also compatible with \neg CH since WRP follows from MM, and MM $\Rightarrow 2^{\aleph_0} = \aleph_2$.
- Now we present a characterization of WRP:

WRP is equivalent to the following statement: For any uncountable cardinal η , any stationary $S \subseteq [\mathcal{H}(\eta)]^{\aleph_0}$ and any structure $\mathfrak{A} = \langle \mathcal{H}(\eta), \in, \ldots \rangle$ in signature of size $\leq \aleph_1$, there is $M \in [\mathcal{H}(\eta)]^{\aleph_1}$ such that $\mathfrak{A} \upharpoonright_M \prec \mathfrak{A}$; $\mathfrak{S} \cap [M]^{\aleph_0}$ is stationary in $[M]^{\aleph_0}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- WRP is consistent with CH, because it holds if we Levy collapse a supercompact cardinal to ℵ₂.
- WRP is also compatible with \neg CH since WRP follows from MM, and MM $\Rightarrow 2^{\aleph_0} = \aleph_2$.
- Now we present a characterization of WRP:

WRP is equivalent to the following statement: For any uncountable cardinal η , any stationary $S \subseteq [\mathcal{H}(\eta)]^{\aleph_0}$ and any structure $\mathfrak{A} = \langle \mathcal{H}(\eta), \in, \ldots \rangle$ in signature of size $\leq \aleph_1$, there is $M \in [\mathcal{H}(\eta)]^{\aleph_1}$ such that $\mathfrak{A} \upharpoonright M \prec \mathfrak{A};$

2 $S \cap [M]^{\aleph_0}$ is stationary in $[M]^{\aleph_0}$.

Define the weak second order logic \mathcal{L}^{\aleph_0} as follows:

- first order variables (lowercase letters) x, y, z, ...;
- weak second order variables (capital letters) X, Y, Z, ... to be interpreted as countable subsets of the underlying set of a structure;
- first order quantifiers $\forall x, \exists x;$
- we introduce in this logic the symbol "ε":
 xεX shall be interpreted as x ∈ X, and it must be used with a first and a second order variable respectively.

Define the weak second order logic \mathcal{L}^{\aleph_0} as follows:

- first order variables (lowercase letters) x, y, z, ...;
- weak second order variables (capital letters) X, Y, Z, ... to be interpreted as countable subsets of the underlying set of a structure;
- first order quantifiers $\forall x, \exists x;$
- we introduce in this logic the symbol "ε":
 xεX shall be interpreted as x ∈ X, and it must be used with a first and a second order variable respectively.

Define the weak second order logic \mathcal{L}^{\aleph_0} as follows:

- first order variables (lowercase letters) x, y, z, ...;
- weak second order variables (capital letters) X, Y, Z, ... to be interpreted as countable subsets of the underlying set of a structure;
- first order quantifiers $\forall x, \exists x;$
- we introduce in this logic the symbol "ε":
 xεX shall be interpreted as x ∈ X, and it must be used with a first and a second order variable respectively.

Define the weak second order logic \mathcal{L}^{\aleph_0} as follows:

- first order variables (lowercase letters) x, y, z, ...;
- weak second order variables (capital letters) X, Y, Z, ... to be interpreted as countable subsets of the underlying set of a structure;
- first order quantifiers $\forall x, \exists x;$
- we introduce in this logic the symbol "ε":
 xεX shall be interpreted as x ∈ X, and it must be used with a first and a second order variable respectively.
 Define also L^{ℵ₀,II} by adding the second order quantifiers (X ∃Y to L^{ℵ₀})

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Define the weak second order logic \mathcal{L}^{\aleph_0} as follows:

- first order variables (lowercase letters) x, y, z, ...;
- weak second order variables (capital letters) X, Y, Z, ... to be interpreted as countable subsets of the underlying set of a structure;
- first order quantifiers $\forall x, \exists x;$
- we introduce in this logic the symbol "ε":
 xεX shall be interpreted as x ∈ X, and it must be used with a first and a second order variable respectively.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Define the weak second order logic \mathcal{L}^{\aleph_0} as follows:

- first order variables (lowercase letters) x, y, z, ...;
- weak second order variables (capital letters) X, Y, Z, ... to be interpreted as countable subsets of the underlying set of a structure;
- first order quantifiers $\forall x, \exists x;$
- we introduce in this logic the symbol "ε":
 xεX shall be interpreted as x ∈ X, and it must be used with a first and a second order variable respectively.

Now define $\mathcal{L}_{\text{stat}}^{\aleph_0}$ by adding to \mathcal{L}^{\aleph_0} a new quantifier "statX" for second order variables to be interpreted as follows: Let φ be an $\mathcal{L}_{\text{stat}}^{\aleph_0}$ -formula. stat $X\varphi(X)$ means that φ holds for stationary many X, i.e. given a structure $\mathfrak{A} = \langle A, \ldots \rangle$ we define

$$\mathfrak{A} \models \text{``stat} X \varphi(X) \text{''}$$
$$\{B \in [A]^{\aleph_0} : \mathfrak{A} \models \text{``} \varphi(B) \text{''}\} \text{ is stationary in } [A]^{\aleph_0}$$

In $\mathcal{L}_{\text{stat}}^{\aleph_0}$ we can also define $\operatorname{aa} X$ (for almost all X) the dual quantifier for $\operatorname{stat} X$. $\operatorname{aa} X \varphi(X)$ is an abbreviation for $\neg \operatorname{stat} X \neg \varphi(X)$. In other words:

Now define $\mathcal{L}_{\text{stat}}^{\aleph_0}$ by adding to \mathcal{L}^{\aleph_0} a new quantifier "statX" for second order variables to be interpreted as follows: Let φ be an $\mathcal{L}_{\text{stat}}^{\aleph_0}$ -formula. stat $X\varphi(X)$ means that φ holds for stationary many X, i.e. given a structure $\mathfrak{A} = \langle A, \ldots \rangle$ we define

$$\begin{split} \mathfrak{A} &\models ``\mathsf{stat} X \varphi(X) " \\ & \updownarrow \\ \{B \in [A]^{\aleph_0} \, : \, \mathfrak{A} \models ``\varphi(B) "\} \text{ is stationary in } [A]^{\aleph_0} \end{split}$$

In $\mathcal{L}_{\text{stat}}^{\aleph_0}$ we can also define aaX (for almost all X) the dual quantifier for statX. aa $X\varphi(X)$ is an abbreviation for \neg stat $X\neg\varphi(X)$. In other words:

$$\mathfrak{A} \models \text{``aa} X \varphi(X) \text{''}$$
$$\mathfrak{D} \\ \{B \in [A]^{\aleph_0} : \mathfrak{A} \models \text{``} \varphi(B) \text{''}\} \text{ contains a club subset of } [A]^{\aleph_0}$$

Let \mathcal{L} be a logic (or family of formulas in a logic), structures $\mathfrak{A}, \mathfrak{B}$ in the same signature, $\mathfrak{B} \subseteq \mathfrak{A}$. We say that

 $\mathfrak{B}\prec_{\mathcal{L}}\mathfrak{A}$

(\mathfrak{B} is an \mathcal{L} -elementary substructure of \mathfrak{A}) iff: for all formulas $\varphi(x_0, \ldots, x_n, X_0, \ldots, X_m)$ in \mathcal{L} , for all b_0, \ldots, b_n first order objects of \mathfrak{B} , all B_0, \ldots, B_m second order objects of \mathfrak{B} , we have

$$\mathfrak{B}\models "\varphi(b_0,\ldots,B_0,\ldots)" \Leftrightarrow \mathfrak{A}\models "\varphi(b_0,\ldots,B_0,\ldots)"$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Similarly, we write

$$\mathfrak{A}\prec^-_{\mathcal{L}}\mathfrak{B}$$

iff for all formulas φ in \mathcal{L} which have only first order free variables and for all b_0, \ldots, b_n first order objects in \mathfrak{B} , we have

$$\mathfrak{B}\models "\varphi(b_0,\ldots,b_n)"\Leftrightarrow \mathfrak{A}\models "\varphi(b_0,\ldots,b_n)"$$

Strong Downwards Löwenheim-Skolem reflection

Let \mathcal{L} be a logic and μ an infinite cardinal. Define:

 $SDLS(\mathcal{L}, < \mu)$

For any structure \mathfrak{A} of countable signature of cardinality $\geq \mu$, there is $\mathfrak{B} \prec_{\mathcal{L}} \mathfrak{A}$ of cardinality $< \mu$.

Similarly, define:

$\mathsf{SDLS}^{-}(\mathcal{L}, < \mu)$

For any structure \mathfrak{A} of countable signature of cardinality $\geq \mu$, there is $\mathfrak{B} \prec_{\mathcal{L}}^{-} \mathfrak{A}$ of cardinality $< \mu$.

This gives us a variety of different reflection statements.

Strong Downwards Löwenheim-Skolem reflection

Let \mathcal{L} be a logic and μ an infinite cardinal. Define:

 $SDLS(\mathcal{L}, < \mu)$

For any structure \mathfrak{A} of countable signature of cardinality $\geq \mu$, there is $\mathfrak{B} \prec_{\mathcal{L}} \mathfrak{A}$ of cardinality $< \mu$.

Similarly, define:

 $\mathsf{SDLS}^{-}(\mathcal{L}, < \mu)$

For any structure \mathfrak{A} of countable signature of cardinality $\geq \mu$, there is $\mathfrak{B} \prec_{\mathcal{L}}^{-} \mathfrak{A}$ of cardinality $< \mu$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This gives us a variety of different reflection statements.

Strong Downwards Löwenheim-Skolem reflection

Let \mathcal{L} be a logic and μ an infinite cardinal. Define:

 $SDLS(\mathcal{L}, < \mu)$

For any structure \mathfrak{A} of countable signature of cardinality $\geq \mu$, there is $\mathfrak{B} \prec_{\mathcal{L}} \mathfrak{A}$ of cardinality $< \mu$.

Similarly, define:

 $SDLS^{-}(\mathcal{L}, < \mu)$

For any structure \mathfrak{A} of countable signature of cardinality $\geq \mu$, there is $\mathfrak{B} \prec_{\mathcal{L}}^{-} \mathfrak{A}$ of cardinality $< \mu$.

This gives us a variety of different reflection statements.

$SDLS^{-}(\mathcal{L}^{\aleph_{0}}, < \aleph_{1})$ is just the usual Downward Löwenheim-Skolem Theorem for the first order logic, and thus holds in ZFC.

Example

$SDLS^{-}(\mathcal{L}^{\aleph_{0},II}, < \aleph_{2})$ implies CH.

Rough idea: we can use the following "trick" to code second order objects into first order objects. Consider the structure $\mathfrak{A} = \langle \omega \cup \mathcal{P}(\omega), \omega, E \rangle$, where $E = \{ \langle n, a \rangle : n \in a \subseteq \omega \}$. Consider also the formula

$$\psi = \forall X (X \subset \omega \to \exists x \forall n \in \omega (n \varepsilon X \leftrightarrow n E x))$$

Clearly $\mathfrak{A} \models ``\psi``$. By SDLS⁻($\mathcal{L}^{\aleph_0, II}, < \aleph_2$), there is some $\mathfrak{B} \prec_{\mathcal{L}^{\aleph_0, II}}^{-} \mathfrak{A}$ ($\mathfrak{B} = \langle B, \ldots \rangle, |B| < \aleph_2$) such that $\mathfrak{B} \models ``\psi``$. Then $\mathcal{P}(\omega) \subseteq B$, thus $2^{\aleph_0} < \aleph_2$.

$SDLS^{-}(\mathcal{L}^{\aleph_{0}}, < \aleph_{1})$ is just the usual Downward Löwenheim-Skolem Theorem for the first order logic, and thus holds in ZFC.

Example

$SDLS^{-}(\mathcal{L}^{\aleph_{0},II}, < \aleph_{2})$ implies CH.

Rough idea: we can use the following "trick" to code second order objects into first order objects. Consider the structure $\mathfrak{A} = \langle \omega \cup \mathcal{P}(\omega), \omega, E \rangle$, where $E = \{ \langle n, a \rangle : n \in a \subseteq \omega \}$. Consider also the formula

$$\psi = \forall X (X \subset \omega \to \exists x \forall n \in \omega (n \varepsilon X \leftrightarrow n E x))$$

Clearly $\mathfrak{A} \models ``\psi``$. By SDLS⁻($\mathcal{L}^{\aleph_0, II}, < \aleph_2$), there is some $\mathfrak{B} \prec_{\mathcal{L}^{\aleph_0, II}}^{-} \mathfrak{A} (\mathfrak{B} = \langle B, \ldots \rangle, |B| < \aleph_2)$ such that $\mathfrak{B} \models ``\psi``$. Then $\mathcal{P}(\omega) \subseteq B$, thus $2^{\aleph_0} < \aleph_2$.

$SDLS^{-}(\mathcal{L}^{\aleph_{0}}, < \aleph_{1})$ is just the usual Downward Löwenheim-Skolem Theorem for the first order logic, and thus holds in ZFC.

Example

 $SDLS^{-}(\mathcal{L}^{\aleph_{0},II}, < \aleph_{2})$ implies CH.

Rough idea: we can use the following "trick" to code second order objects into first order objects. Consider the structure $\mathfrak{A} = \langle \omega \cup \mathcal{P}(\omega), \omega, E \rangle$, where $E = \{ \langle n, a \rangle : n \in a \subseteq \omega \}$. Consider also the formula

 $\psi = \forall X (X \subset \omega \to \exists x \forall n \in \omega (n \varepsilon X \leftrightarrow n E x))$

Clearly $\mathfrak{A} \models ``\psi``$. By SDLS⁻($\mathcal{L}^{\aleph_0, II}, < \aleph_2$), there is some $\mathfrak{B} \prec_{\mathcal{L}^{\aleph_0, II}}^- \mathfrak{A}$ ($\mathfrak{B} = \langle B, \ldots \rangle, |B| < \aleph_2$) such that $\mathfrak{B} \models ``\psi``$. Then $\mathcal{P}(\omega) \subseteq B$, thus $2^{\aleph_0} < \aleph_2$.

$SDLS^{-}(\mathcal{L}^{\aleph_{0}}, < \aleph_{1})$ is just the usual Downward Löwenheim-Skolem Theorem for the first order logic, and thus holds in ZFC.

Example

 $SDLS^{-}(\mathcal{L}^{\aleph_{0},II}, < \aleph_{2})$ implies CH.

Rough idea: we can use the following "trick" to code second order objects into first order objects. Consider the structure $\mathfrak{A} = \langle \omega \cup \mathcal{P}(\omega), \omega, E \rangle$, where $E = \{ \langle n, a \rangle : n \in a \subseteq \omega \}$. Consider also the formula

 $\psi = \forall X (X \subset \omega \to \exists x \forall n \in \omega (n \varepsilon X \leftrightarrow n E x))$

Clearly $\mathfrak{A} \models ``\psi``$. By SDLS⁻($\mathcal{L}^{\aleph_0, II}, < \aleph_2$), there is some $\mathfrak{B} \prec_{\mathcal{L}^{\aleph_0, II}}^{-} \mathfrak{A} (\mathfrak{B} = \langle B, \ldots \rangle, |B| < \aleph_2)$ such that $\mathfrak{B} \models ``\psi``$. Then $\mathcal{P}(\omega) \subseteq B$, thus $2^{\aleph_0} < \aleph_2$.

$SDLS^{-}(\mathcal{L}^{\aleph_{0}}, < \aleph_{1})$ is just the usual Downward Löwenheim-Skolem Theorem for the first order logic, and thus holds in ZFC.

Example

 $SDLS^{-}(\mathcal{L}^{\aleph_{0},II}, < \aleph_{2})$ implies CH.

Rough idea: we can use the following "trick" to code second order objects into first order objects. Consider the structure $\mathfrak{A} = \langle \omega \cup \mathcal{P}(\omega), \omega, E \rangle$, where $E = \{ \langle n, a \rangle : n \in a \subseteq \omega \}$. Consider also the formula

$$\psi = \forall X (X \subset \omega \to \exists x \forall n \in \omega (n \varepsilon X \leftrightarrow n E x))$$

Clearly $\mathfrak{A} \models ``\psi``$. By SDLS⁻($\mathcal{L}^{\aleph_0, II}, < \aleph_2$), there is some $\mathfrak{B} \prec_{\mathcal{L}^{\aleph_0, II}}^{-} \mathfrak{A}$ ($\mathfrak{B} = \langle B, \ldots \rangle, |B| < \aleph_2$) such that $\mathfrak{B} \models ``\psi``$. Then $\mathcal{P}(\omega) \subseteq B$, thus $2^{\aleph_0} < \aleph_2$.

$SDLS^{-}(\mathcal{L}^{\aleph_{0}}, < \aleph_{1})$ is just the usual Downward Löwenheim-Skolem Theorem for the first order logic, and thus holds in ZFC.

Example

$SDLS^{-}(\mathcal{L}^{\aleph_{0},II}, < \aleph_{2})$ implies CH.

Rough idea: we can use the following "trick" to code second order objects into first order objects. Consider the structure $\mathfrak{A} = \langle \omega \cup \mathcal{P}(\omega), \omega, E \rangle$, where $E = \{ \langle n, a \rangle : n \in a \subseteq \omega \}$. Consider also the formula

$$\psi = \forall X (X \subset \omega \to \exists x \forall n \in \omega (n \varepsilon X \leftrightarrow n E x))$$

Clearly $\mathfrak{A} \models ``\psi``$. By SDLS⁻($\mathcal{L}^{\aleph_0, II}, < \aleph_2$), there is some $\mathfrak{B} \prec_{\mathcal{L}^{\aleph_0, II}}^{-} \mathfrak{A}$ ($\mathfrak{B} = \langle B, \ldots \rangle, |B| < \aleph_2$) such that $\mathfrak{B} \models ``\psi``$. Then $\mathcal{P}(\omega) \subseteq B$, thus $2^{\aleph_0} < \aleph_2$.

$SDLS^{-}(\mathcal{L}^{\aleph_{0}}, < \aleph_{1})$ is just the usual Downward Löwenheim-Skolem Theorem for the first order logic, and thus holds in ZFC.

Example

$SDLS^{-}(\mathcal{L}^{\aleph_{0},II}, < \aleph_{2})$ implies CH.

Rough idea: we can use the following "trick" to code second order objects into first order objects. Consider the structure $\mathfrak{A} = \langle \omega \cup \mathcal{P}(\omega), \omega, E \rangle$, where $E = \{ \langle n, a \rangle : n \in a \subseteq \omega \}$. Consider also the formula

$$\psi = \forall X (X \subset \omega \to \exists x \forall n \in \omega (n \varepsilon X \leftrightarrow n E x))$$

Clearly $\mathfrak{A} \models ``\psi``$. By SDLS⁻($\mathcal{L}^{\aleph_0, II}, < \aleph_2$), there is some $\mathfrak{B} \prec_{\mathcal{L}^{\aleph_0, II}}^{-} \mathfrak{A}$ ($\mathfrak{B} = \langle B, \ldots \rangle, |B| < \aleph_2$) such that $\mathfrak{B} \models ``\psi``$. Then $\mathcal{P}(\omega) \subseteq B$, thus $2^{\aleph_0} < \aleph_2$.

Lemma

In ZFC, the following are equivalent:

1 *CH*;

2 SDLS(L^{ℵ₀}, < ℵ₂);
3 SDLS⁻(L^{ℵ₀,II}, < ℵ₂);
4 SDLS(L^{ℵ₀,II}, < ℵ₂);

- (Magidor, 2016) SDLS[−](L^ℵ₀ < ℵ₂) implies FRP;
- $SDLS^{-}(\mathcal{L}_{stat}^{\aleph_{0}}, < \aleph_{2})$ implies WRP.
- GRP^ω_{<κ} (Game Reflection Principle by Bernard König) implies SDLS(L^{ℵ0,II}_{stat}, < κ).

Lemma

In ZFC, the following are equivalent:

- ❶ *CH*;
- 2 $SDLS(\mathcal{L}^{\aleph_0}, < \aleph_2);$
- **3** $SDLS^{-}(\mathcal{L}^{\aleph_{0},II}, < \aleph_{2});$ **4** $SDLS(\mathcal{L}^{\aleph_{0},II}, < \aleph_{2});$

- (Magidor, 2016) SDLS⁻($\mathcal{L}_{stat}^{\aleph_0}$, $< \aleph_2$) implies FRP;
- $SDLS^{-}(\mathcal{L}_{stat}^{\aleph_{0}}, < \aleph_{2})$ implies WRP.
- GRP^ω_{<κ} (Game Reflection Principle by Bernard König) implies SDLS(L^{ℵ0,II}_{stat}, < κ).

Lemma

In ZFC, the following are equivalent:

CH;
 SDLS(L^{ℵ₀}, < ℵ₂);
 SDLS⁻(L^{ℵ₀,II}, < ℵ₂);
 SDLS(L^{ℵ₀,II}, < ℵ₂);

- (Magidor, 2016) SDLS[−](L^ℵ₀ < ℵ₂) implies FRP;
- $SDLS^{-}(\mathcal{L}_{stat}^{\aleph_{0}}, < \aleph_{2})$ implies WRP.
- GRP^ω_{<κ} (Game Reflection Principle by Bernard König) implies SDLS(L^{ℵ0,II}_{stat}, < κ).

Lemma

In ZFC, the following are equivalent:

- CH;
- 2 $SDLS(\mathcal{L}^{\aleph_0}, < \aleph_2);$
- 3 $SDLS^{-}(\mathcal{L}^{\aleph_0, II}, < \aleph_2);$
- 4 $SDLS(\mathcal{L}^{\aleph_0,II}, < \aleph_2);$

- (Magidor, 2016) SDLS[−](L^ℵ₀_{stat}, < ℵ₂) implies FRP;
- $SDLS^{-}(\mathcal{L}_{stat}^{\aleph_{0}}, < \aleph_{2})$ implies WRP.
- GRP^ω_{<κ} (Game Reflection Principle by Bernard König) implies SDLS(L^{ℵ0,II}_{stat}, < κ).

Lemma

In ZFC, the following are equivalent:

- CH;
- 2 $SDLS(\mathcal{L}^{\aleph_0}, < \aleph_2);$
- 3 $SDLS^{-}(\mathcal{L}^{\aleph_{0},II}, < \aleph_{2});$
- 4 $SDLS(\mathcal{L}^{\aleph_0,II}, < \aleph_2);$

- (Magidor, 2016) SDLS[−](L^{ℵ0}_{stat}, < ℵ₂) implies FRP;
- $SDLS^{-}(\mathcal{L}_{stat}^{\aleph_{0}}, < \aleph_{2})$ implies WRP.
- GRP^ω_{<κ} (Game Reflection Principle by Bernard König) implies SDLS(L^{ℵ0,II}_{stat}, < κ).

Lemma

In ZFC, the following are equivalent:

- CH;
- 2 $SDLS(\mathcal{L}^{\aleph_0}, < \aleph_2);$
- 3 $SDLS^{-}(\mathcal{L}^{\aleph_0, II}, < \aleph_2);$
- 4 $SDLS(\mathcal{L}^{\aleph_0,II}, < \aleph_2);$

- (Magidor, 2016) SDLS[−](L^{ℵ0}_{stat}, < ℵ₂) implies FRP;
- $SDLS^{-}(\mathcal{L}_{stat}^{\aleph_{0}}, < \aleph_{2})$ implies WRP.
- GRP^ω_{<κ} (Game Reflection Principle by Bernard König) implies SDLS(L^{ℵ0,II}_{stat}, < κ).

Lemma

In ZFC, the following are equivalent:

- CH;
- 2 $SDLS(\mathcal{L}^{\aleph_0}, < \aleph_2);$
- 3 $SDLS^{-}(\mathcal{L}^{\aleph_0, II}, < \aleph_2);$
- 4 $SDLS(\mathcal{L}^{\aleph_0,II}, < \aleph_2);$

- (Magidor, 2016) SDLS[−](L^{ℵ0}_{stat}, < ℵ₂) implies FRP;
- $SDLS^{-}(\mathcal{L}_{stat}^{\aleph_{0}}, < \aleph_{2})$ implies WRP.
- GRP^ω_{<κ} (Game Reflection Principle by Bernard König) implies SDLS(L^{ℵ0,II}_{stat}, < κ).

$\mathsf{SDLS}^-(\mathcal{L}^{leph_0}_{\mathsf{stat}},<\kappa)$ and the continuum

Therefore we have

$$\mathsf{SDLS}^{-}(\mathcal{L}^{\aleph_0}_{\mathsf{stat}}, < \aleph_2) \Rightarrow \mathsf{WRP} \Rightarrow 2^{\aleph_0} \leq \aleph_2$$

Similarly to WRP, SDLS⁻($\mathcal{L}_{stat}^{\aleph_0}, < \aleph_2$) is compatible with both $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_0} = \aleph_2$. Furthermore, for $\kappa > \aleph_2$, SDLS⁻($\mathcal{L}_{stat}^{\aleph_0}, < \kappa$) imposes a stricter restriction to the size of the continuum:

Lemma

For any $\kappa > \aleph_2$, $SDLS^-(\mathcal{L}_{stat}^{\aleph_0}, < \kappa)$ implies $2^{\aleph_0} < \kappa$.

In particular, since $\mathsf{SDLS}(\mathcal{L}^{\aleph_0}, < \aleph_2) \Leftrightarrow \mathsf{CH}$, we have :

Corollary

For any $\kappa \geq \aleph_2$, $SDLS(\mathcal{L}_{stat}^{\aleph_0}, < \kappa)$ implies $2^{\aleph_0} < \kappa$.
$\mathsf{SDLS}^-(\mathcal{L}^{leph_0}_{\mathsf{stat}},<\kappa)$ and the continuum

Therefore we have

$$\mathsf{SDLS}^{-}(\mathcal{L}^{\aleph_0}_{\mathsf{stat}},<\aleph_2)\Rightarrow\mathsf{WRP}\Rightarrow 2^{\aleph_0}\leq\aleph_2$$

Similarly to WRP, SDLS⁻($\mathcal{L}_{stat}^{\aleph_0}$, $< \aleph_2$) is compatible with both $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_0} = \aleph_2$.

Furthermore, for $\kappa > \aleph_2$, SDLS⁻($\mathcal{L}_{stat}^{\aleph_0}, < \kappa$) imposes a stricter restriction to the size of the continuum:

Lemma

For any $\kappa > \aleph_2$, $SDLS^-(\mathcal{L}_{stat}^{\aleph_0}, < \kappa)$ implies $2^{\aleph_0} < \kappa$.

In particular, since $\mathsf{SDLS}(\mathcal{L}^{\aleph_0}, < \aleph_2) \Leftrightarrow \mathsf{CH}$, we have :

Corollary

For any $\kappa \geq \aleph_2$, $SDLS(\mathcal{L}_{stat}^{\aleph_0}, < \kappa)$ implies $2^{\aleph_0} < \kappa$.

$\mathsf{SDLS}^-(\mathcal{L}^{leph_0}_{\mathsf{stat}},<\kappa)$ and the continuum

Therefore we have

$$\mathsf{SDLS}^{-}(\mathcal{L}^{\aleph_0}_{\mathsf{stat}},<\aleph_2)\Rightarrow\mathsf{WRP}\Rightarrow 2^{\aleph_0}\leq\aleph_2$$

Similarly to WRP, SDLS⁻($\mathcal{L}_{stat}^{\aleph_0}, < \aleph_2$) is compatible with both $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_0} = \aleph_2$. Furthermore, for $\kappa > \aleph_2$, SDLS⁻($\mathcal{L}_{stat}^{\aleph_0}, < \kappa$) imposes a stricter restriction to the size of the continuum:

Lemma

For any $\kappa > \aleph_2$, $SDLS^-(\mathcal{L}_{stat}^{\aleph_0}, < \kappa)$ implies $2^{\aleph_0} < \kappa$.

In particular, since $\mathsf{SDLS}(\mathcal{L}^{\aleph_0}, < \aleph_2) \Leftrightarrow \mathsf{CH}$, we have :

Corollary

For any $\kappa \geq \aleph_2$, $SDLS(\mathcal{L}_{stat}^{\aleph_0}, < \kappa)$ implies $2^{\aleph_0} < \kappa$.

$\mathsf{SDLS}^-(\mathcal{L}^{leph_0}_{\mathsf{stat}},<\kappa)$ and the continuum

Therefore we have

$$\mathsf{SDLS}^{-}(\mathcal{L}^{\aleph_0}_{\mathsf{stat}},<\aleph_2)\Rightarrow\mathsf{WRP}\Rightarrow 2^{\aleph_0}\leq\aleph_2$$

Similarly to WRP, SDLS⁻($\mathcal{L}_{stat}^{\aleph_0}, < \aleph_2$) is compatible with both $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_0} = \aleph_2$. Furthermore, for $\kappa > \aleph_2$, SDLS⁻($\mathcal{L}_{stat}^{\aleph_0}, < \kappa$) imposes a stricter restriction to the size of the continuum:

Lemma

For any $\kappa > \aleph_2$, $SDLS^-(\mathcal{L}_{stat}^{\aleph_0}, < \kappa)$ implies $2^{\aleph_0} < \kappa$.

In particular, since $\mathsf{SDLS}(\mathcal{L}^{\aleph_0}, < \aleph_2) \Leftrightarrow \mathsf{CH}$, we have :

Corollary

For any $\kappa \geq \aleph_2$, $SDLS(\mathcal{L}_{stat}^{\aleph_0}, < \kappa)$ implies $2^{\aleph_0} < \kappa$.

$\mathsf{SDLS}^{-}(\mathcal{L}^{\aleph_0}_{\mathsf{stat}}, < \kappa)$ and the continuum

Therefore we have

$$\mathsf{SDLS}^{-}(\mathcal{L}^{\aleph_0}_{\mathsf{stat}},<\aleph_2)\Rightarrow\mathsf{WRP}\Rightarrow 2^{\aleph_0}\leq\aleph_2$$

Similarly to WRP, SDLS⁻($\mathcal{L}_{stat}^{\aleph_0}, < \aleph_2$) is compatible with both $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_0} = \aleph_2$. Furthermore, for $\kappa > \aleph_2$, SDLS⁻($\mathcal{L}_{stat}^{\aleph_0}, < \kappa$) imposes a stricter restriction to the size of the continuum:

Lemma

For any $\kappa > \aleph_2$, $SDLS^-(\mathcal{L}_{stat}^{\aleph_0}, < \kappa)$ implies $2^{\aleph_0} < \kappa$.

In particular, since $SDLS(\mathcal{L}^{\aleph_0}, < \aleph_2) \Leftrightarrow CH$, we have :

Corollary

For any $\kappa \geq \aleph_2$, $SDLS(\mathcal{L}_{stat}^{\aleph_0}, < \kappa)$ implies $2^{\aleph_0} < \kappa$.

Recall the previous characterization of WRP:

WRP equivalent to:

For any uncountable cardinal λ , stationary $S \subseteq [\mathcal{H}(\lambda)]^{\aleph_0}$ and structure $\mathfrak{A} = \langle \mathcal{H}(\lambda), \in, \ldots \rangle$ in signature of size $\leq \aleph_1$, there is $M \in [\mathcal{H}(\lambda)]^{\aleph_1}$ such that

- $\mathfrak{A} \upharpoonright _{M} \prec \mathfrak{A};$
- **2** $S \cap [M]^{\aleph_0}$ is stationary in $[M]^{\aleph_0}$.

We now present some reflection statements which can also characterize some of the SLDS statements.

Recall the previous characterization of WRP:

WRP equivalent to:

For any uncountable cardinal λ , stationary $S \subseteq [\mathcal{H}(\lambda)]^{\aleph_0}$ and structure $\mathfrak{A} = \langle \mathcal{H}(\lambda), \in, ... \rangle$ in signature of size $\leq \aleph_1$, there is $M \in [\mathcal{H}(\lambda)]^{\aleph_1}$ such that $\mathfrak{A} \upharpoonright M \prec \mathfrak{A}$;

2 $S \cap [M]^{\aleph_0}$ is stationary in $[M]^{\aleph_0}$.

We now present some reflection statements which can also characterize some of the SLDS statements.

 $(*)^{-}_{<\kappa}$

Given any $\eta > \kappa$, for any structure $\mathfrak{A} = \langle \mathcal{H}(\eta), \in, ... \rangle$ in countable signature and any family $S = \langle S_a : a \in \mathcal{H}(\eta) \rangle$ of stationary subsets of $[\mathcal{H}(\eta)]^{\aleph_0}$, there is some $N \in [\mathcal{H}(\eta)]^{<\kappa}$ satisfying:

- ② for each $a \in N$, $S_a \cap [N]^{\aleph_0}$ is an stationary subset of $[N]^{\aleph_0}$.

$(*)_{<\kappa}$

Given any $\eta > \kappa$, for any structure $\mathfrak{A} = \langle \mathcal{H}(\eta), \in, ... \rangle$ in countable signature and any family $S = \langle S_a : a \in \mathcal{H}(\eta) \rangle$ of stationary subsets of $[\mathcal{H}(\eta)]^{\aleph_0}$, there is some $N \in [\mathcal{H}(\eta)]^{<\kappa}$ satisfying:

- N is internally club, i.e., N contains a club subset of [N]^{ℵ₀};
- $\mathfrak{A} \upharpoonright \mathcal{M} \prec \mathfrak{A};$
- ② for each $a \in N$, $S_a \cap [N]^{\aleph_0}$ is an stationary subset of $[N]^{\aleph_0}$.

$(*)^+_{<\kappa}$

Given any $\eta > \kappa$, for any structure $\mathfrak{A} = \langle \mathcal{H}(\eta), \in, ... \rangle$ in countable signature and any family $S = \langle S_a : a \in \mathcal{H}(\eta) \rangle$ of stationary subsets of $[\mathcal{H}(\eta)]^{\aleph_0}$, there is some $N \in [\mathcal{H}(\eta)]^{<\kappa}$ satisfying:

- $\bullet \ [N]^{\aleph_0} \subseteq N;$
- ② for each $a \in N$, $S_a \cap [N]^{\aleph_0}$ is an stationary subset of $[N]^{\aleph_0}$.

Clearly $(*)^+_{<\kappa} \Rightarrow (*)_{<\kappa} \Rightarrow (*)^-_{<\kappa}$. Similarly to WRP, for any regular $\kappa \ge \aleph_2$, the consistency of $(*)^+_{<\kappa^+}$ (denote by $(*)^+_{\le\kappa}$) can be obtained by Levy collapsing a supercompact cardinal bigger than κ to become κ^+ .

$(*)^+_{<\kappa}$

Given any $\eta > \kappa$, for any structure $\mathfrak{A} = \langle \mathcal{H}(\eta), \in, ... \rangle$ in countable signature and any family $S = \langle S_a : a \in \mathcal{H}(\eta) \rangle$ of stationary subsets of $[\mathcal{H}(\eta)]^{\aleph_0}$, there is some $N \in [\mathcal{H}(\eta)]^{<\kappa}$ satisfying:

- $\bullet \ [N]^{\aleph_0} \subseteq N;$
- ② for each $a \in N$, $S_a \cap [N]^{\aleph_0}$ is an stationary subset of $[N]^{\aleph_0}$.

Clearly $(*)^+_{<\kappa} \Rightarrow (*)_{<\kappa} \Rightarrow (*)^-_{<\kappa}$.

Similarly to WRP, for any regular $\kappa \geq \aleph_2$, the consistency of $(*)^+_{\leq \kappa^+}$ (denote by $(*)^+_{\leq \kappa}$) can be obtained by Levy collapsing a supercompact cardinal bigger than κ to become κ^+ .

$(*)^+_{<\kappa}$

Given any $\eta > \kappa$, for any structure $\mathfrak{A} = \langle \mathcal{H}(\eta), \in, ... \rangle$ in countable signature and any family $S = \langle S_a : a \in \mathcal{H}(\eta) \rangle$ of stationary subsets of $[\mathcal{H}(\eta)]^{\aleph_0}$, there is some $N \in [\mathcal{H}(\eta)]^{<\kappa}$ satisfying:

- $\bullet \ [N]^{\aleph_0} \subseteq N;$
- ② for each $a \in N$, $S_a \cap [N]^{\aleph_0}$ is an stationary subset of $[N]^{\aleph_0}$.

Clearly $(*)^+_{<\kappa} \Rightarrow (*)_{<\kappa} \Rightarrow (*)^-_{<\kappa}$. Similarly to WRP, for any regular $\kappa \ge \aleph_2$, the consistency of $(*)^+_{<\kappa^+}$ (denote by $(*)^+_{\le\kappa}$) can be obtained by Levy collapsing a supercompact cardinal bigger than κ to become κ^+ .

Diagonal Reflection Principle

 $(*)_{<\kappa}$ is a variation of the following principle introduced by Sean Cox.

Let C be a class of sets of cardinality \aleph_1 and $\theta > \aleph_1$ be a cardinal of uncountable cofinality.

 $\mathsf{DRP}(\theta, \mathcal{C})$

There are stationarily many $M \in [\mathcal{H}((\theta^{\aleph_0})^+)]^{\aleph_1}$ such that

- $M \cap \mathcal{H}(\theta) \in \mathcal{C};$
- e for all *R* ∈ *M*, if *R* is a stationary subset of [*θ*]^{ℵ₀}, then
 R ∩ [*θ* ∩ *M*]^{ℵ₀} is stationary in [*θ* ∩ *M*]^{ℵ₀}.

Lemma

 $(*)_{<\aleph_2} \Leftrightarrow DRP(\theta, IC_{\omega_1})$ holds for all regular $\theta \geq \aleph_2$

where IC_{ω_1} is the class of all internally club sets of size $\frac{N_1}{2}$, $\frac{1}{2}$ and

Diagonal Reflection Principle

= 900

 $(*)_{<\kappa}$ is a variation of the following principle introduced by Sean Cox.

Let C be a class of sets of cardinality \aleph_1 and $\theta > \aleph_1$ be a cardinal of uncountable cofinality.

 $\mathsf{DRP}(\theta, \mathcal{C})$

There are stationarily many $M \in [\mathcal{H}((\theta^{\aleph_0})^+)]^{\aleph_1}$ such that

- $M \cap \mathcal{H}(\theta) \in \mathcal{C};$
- e for all *R* ∈ *M*, if *R* is a stationary subset of [*θ*]^{ℵ₀}, then
 R ∩ [*θ* ∩ *M*]^{ℵ₀} is stationary in [*θ* ∩ *M*]^{ℵ₀}.

Lemma

 $(*)_{<\aleph_2} \Leftrightarrow DRP(\theta, IC_{\omega_1})$ holds for all regular $\theta \geq \aleph_2$

where $IC_{\omega 1}$ is the class of all internally club sets of size \aleph_1 ,

Characterization of SLDS

For
$$\kappa \geq \aleph_2$$
 we have:
Proposition
 $SDLS^{-}(\mathcal{L}_{stat}^{\aleph_0}, < \kappa) \Leftrightarrow (*)_{<\kappa}$
Proposition
 $SDLS(\mathcal{L}_{stat}^{\aleph_0, ll}, < \kappa) \Leftrightarrow (*)_{<\kappa}^{+}$
In particular, for the case where $\kappa = \aleph_2$, we have

 $\mathsf{SDLS}(\mathcal{L}^{\aleph_0}_{\mathsf{stat}}, < \aleph_2) \Leftrightarrow (*)_{< \aleph_2} + \mathsf{CH}$

Characterization of SLDS

For
$$\kappa \geq \aleph_2$$
 we have:
Proposition
 $SDLS^-(\mathcal{L}_{stat}^{\aleph_0}, < \kappa) \Leftrightarrow (*)_{<\kappa}$
Proposition
 $SDLS(\mathcal{L}_{stat}^{\aleph_0, II}, < \kappa) \Leftrightarrow (*)_{<\kappa}^+$
In particular, for the case where $\kappa = \aleph_2$, we have

 $\mathsf{SDLS}(\mathcal{L}^{\aleph_0}_{\mathsf{stat}}, < \aleph_2) \Leftrightarrow (*)_{< \aleph_2} + \mathsf{CH}$

Characterization of SLDS

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

For
$$\kappa \geq \aleph_2$$
 we have:
Proposition
 $SDLS^{-}(\mathcal{L}_{stat}^{\aleph_0}, < \kappa) \Leftrightarrow (*)_{<\kappa}$
Proposition
 $SDLS(\mathcal{L}_{stat}^{\aleph_0, II}, < \kappa) \Leftrightarrow (*)^+_{<\kappa}$
In particular, for the case where $\kappa = \aleph_2$, we have

$$\mathsf{SDLS}(\mathcal{L}^{\aleph_0}_{\mathsf{stat}},<\aleph_2) \Leftrightarrow (*)_{<\aleph_2} + \mathsf{CH}$$

1 Stationary Logic and reflection principles

Notice that ${\sf SDLS}({\mathcal L}_{\sf stat}^{\aleph_0},<2^{\aleph_0})$ is always false (thus $(*)_{<2^{\aleph_0}}^+$ is

also false). However the weaker principle $(*)^{-}_{<2^{\aleph_0}}$ is consistent. Actually, we have a simple example of a model W such that

$$W\models ``(*)_{\leq 2^{\aleph_0}}^+ \wedge (*)_{<2^{\aleph_0}}^-".$$

- Start assuming $V \models$ "MM $\land \exists \lambda$ supercompact cardinal";
- MM implies 2^{ℵ₀} = ℵ₂ and also implies (*)[−]_{<ℵ₂};
- define W := V^{Col(ω₂,<λ)}. By collapsing λ to become ℵ₃ we obtain W ⊨ "(*)⁺_{<ℵ3}";
- Col(ω₂, < λ) preserves (*)[−]_{<ℵ2};
- then, indeed $W \models "(*)^-_{<\aleph_2} \land (*)^+_{<\aleph_3} \land 2^{\aleph_0} = \aleph_2$ ".

Notice that $SDLS(\mathcal{L}_{stat}^{\aleph_0}, < 2^{\aleph_0})$ is always false (thus $(*)^+_{<2^{\aleph_0}}$ is also false). However the weaker principle $(*)^-_{<2^{\aleph_0}}$ is consistent. Actually, we have a simple example of a model W such that

$$W\models$$
 " $(*)^+_{\leq 2^{\aleph_0}}\wedge (*)^-_{<2^{\aleph_0}}$ ".

- Start assuming V ⊨ " MM ∧ ∃λ supercompact cardinal ";
- MM implies 2^{ℵ₀} = ℵ₂ and also implies (*)[−]_{<ℵ2};
- define $W := V^{\mathsf{Col}(\omega_2,<\lambda)}$. By collapsing λ to become \aleph_3 we obtain $W \models ``(*)^+_{<\aleph_3}$ ";
- Col(ω₂, < λ) preserves (*)[−]_{<ℵ2};
- then, indeed $W \models "(*)^-_{<\aleph_2} \land (*)^+_{<\aleph_3} \land 2^{\aleph_0} = \aleph_2 "$.

Notice that $SDLS(\mathcal{L}_{stat}^{\aleph_0}, < 2^{\aleph_0})$ is always false (thus $(*)^+_{<2^{\aleph_0}}$ is also false). However the weaker principle $(*)^-_{<2^{\aleph_0}}$ is consistent. Actually, we have a simple example of a model W such that

$$W\models$$
 " $(*)^+_{\leq 2^{\aleph_0}}\wedge (*)^-_{<2^{\aleph_0}}$ ".

- Start assuming $V \models$ "MM $\land \exists \lambda$ supercompact cardinal";
- MM implies $2^{\aleph_0} = \aleph_2$ and also implies $(*)^-_{<\aleph_2}$;
- define $W := V^{\mathsf{Col}(\omega_2,<\lambda)}$. By collapsing λ to become \aleph_3 we obtain $W \models ``(*)^+_{<\aleph_3}$ ";
- Col(ω₂, < λ) preserves (*)[−]_{<ℵ2};
- then, indeed $W \models "(*)^-_{<\aleph_2} \land (*)^+_{<\aleph_3} \land 2^{\aleph_0} = \aleph_2 "$.

Notice that $SDLS(\mathcal{L}_{stat}^{\aleph_0}, < 2^{\aleph_0})$ is always false (thus $(*)^+_{<2^{\aleph_0}}$ is also false). However the weaker principle $(*)^-_{<2^{\aleph_0}}$ is consistent. Actually, we have a simple example of a model W such that

$$W\models$$
 " $(*)^+_{\leq 2^{\aleph_0}}\wedge (*)^-_{<2^{\aleph_0}}$ ".

- Start assuming $V \models$ "MM $\land \exists \lambda$ supercompact cardinal";
- MM implies $2^{\aleph_0} = \aleph_2$ and also implies $(*)^-_{<\aleph_2}$;
- define $W := V^{\mathsf{Col}(\omega_2,<\lambda)}$. By collapsing λ to become \aleph_3 we obtain $W \models ``(*)^+_{<\aleph_3}$ ";
- Col(ω₂, < λ) preserves (*)[−]_{<ℵ2};
- then, indeed $W \models "(*)^-_{<\aleph_2} \land (*)^+_{<\aleph_3} \land 2^{\aleph_0} = \aleph_2 "$.

Notice that $SDLS(\mathcal{L}_{stat}^{\aleph_0}, < 2^{\aleph_0})$ is always false (thus $(*)^+_{<2^{\aleph_0}}$ is also false). However the weaker principle $(*)^-_{<2^{\aleph_0}}$ is consistent. Actually, we have a simple example of a model W such that

$$W\models$$
 " $(*)^+_{\leq 2^{\aleph_0}}\wedge (*)^-_{<2^{\aleph_0}}$ ".

- Start assuming $V \models$ "MM $\land \exists \lambda$ supercompact cardinal";
- MM implies 2^{ℵ0} = ℵ2 and also implies (*)⁻_{<ℵ2};
- define W := V^{Col(ω₂,<λ)}. By collapsing λ to become ℵ₃ we obtain W ⊨ "(*)⁺_{<ℵ3}";
- Col(ω₂, < λ) preserves (*)[−]_{<ℵ2};
- then, indeed $W \models "(*)^-_{<\aleph_2} \land (*)^+_{<\aleph_3} \land 2^{\aleph_0} = \aleph_2 "$.

Notice that $SDLS(\mathcal{L}_{stat}^{\aleph_0}, < 2^{\aleph_0})$ is always false (thus $(*)^+_{<2^{\aleph_0}}$ is also false). However the weaker principle $(*)^-_{<2^{\aleph_0}}$ is consistent. Actually, we have a simple example of a model W such that

$$W\models$$
 " $(*)^+_{\leq 2^{\aleph_0}}\wedge (*)^-_{<2^{\aleph_0}}$ ".

- Start assuming $V \models$ "MM $\land \exists \lambda$ supercompact cardinal";
- MM implies 2^{ℵ0} = ℵ2 and also implies (*)⁻_{<ℵ2};
- define $W := V^{\operatorname{Col}(\omega_2,<\lambda)}$. By collapsing λ to become \aleph_3 we obtain $W \models "(*)^+_{<\aleph_3}$ ";
- $\mathsf{Col}(\omega_2, <\lambda)$ preserves $(*)^-_{<\aleph_2}$;
- then, indeed $W \models "(*)^-_{<\aleph_2} \land (*)^+_{<\aleph_3} \land 2^{\aleph_0} = \aleph_2$ ".

Notice that $SDLS(\mathcal{L}_{stat}^{\aleph_0}, < 2^{\aleph_0})$ is always false (thus $(*)^+_{<2^{\aleph_0}}$ is also false). However the weaker principle $(*)^-_{<2^{\aleph_0}}$ is consistent. Actually, we have a simple example of a model W such that

$$W\models$$
 " $(*)^+_{\leq 2^{\aleph_0}}\wedge (*)^-_{<2^{\aleph_0}}$ ".

- Start assuming $V \models$ "MM $\land \exists \lambda$ supercompact cardinal";
- MM implies 2^{ℵ0} = ℵ2 and also implies (*)⁻_{<ℵ2};
- define W := V^{Col(ω₂,<λ)}. By collapsing λ to become ℵ₃ we obtain W ⊨ "(*)⁺_{<ℵ3}";
- $\mathsf{Col}(\omega_2, <\lambda)$ preserves $(*)^-_{<\aleph_2}$;
- then, indeed $W \models "(*)^-_{<\aleph_2} \land (*)^+_{<\aleph_3} \land 2^{\aleph_0} = \aleph_2$ ".

For this proof we needed $2^{\aleph_0} = \aleph_2$ and $(2^{\aleph_0})^+ = \aleph_3$. This rises the question: is $(*)^+_{\leq 2^{\aleph_0}} \land (*)^-_{<2^{\aleph_0}}$ consistent with 2^{\aleph_0} being arbitrarily big? Is it consistent with the continuum having some large cardinal property?

For this proof we needed $2^{\aleph_0} = \aleph_2$ and $(2^{\aleph_0})^+ = \aleph_3$. This rises the question: is $(*)^+_{\leq 2^{\aleph_0}} \land (*)^-_{<2^{\aleph_0}}$ consistent with 2^{\aleph_0} being arbitrarily big? Is it consistent with the continuum having some large cardinal property?

Yes

Assume GCH and assume there exists $\kappa < \lambda$ supercompact cardinals. We construct W such that

$$W\models ``(*)^+_{\leq 2^{\aleph_0}} \land (*)^-_{< 2^{\aleph_0}} \land 2^{\aleph_0} \text{ carries a } \sigma\text{-saturated ideal}"$$

We construct W by first adding κ many reals, and then we collapse λ to κ^+ . However just simply adding reals (say, with a Cohen forcing) does not work.

We need to add the reals in a way such that we can extend some elementary embeddings for κ and λ in some nice extension.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへ⊙

Assume GCH and assume there exists $\kappa < \lambda$ supercompact cardinals. We construct W such that

$$W\models "(*)^+_{\leq 2^{\aleph_0}} \land (*)^-_{< 2^{\aleph_0}} \land 2^{\aleph_0} \text{ carries a } \sigma\text{-saturated ideal "}$$

We construct W by first adding κ many reals, and then we collapse λ to κ^+ . However just simply adding reals (say, with a Cohen forcing) does not work.

We need to add the reals in a way such that we can extend some elementary embeddings for κ and λ in some nice extension.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assume GCH and assume there exists $\kappa < \lambda$ supercompact cardinals. We construct W such that

$$W\models "(*)^+_{\leq 2^{\aleph_0}} \land (*)^-_{<2^{\aleph_0}} \land 2^{\aleph_0} \text{ carries a } \sigma\text{-saturated ideal "}$$

We construct W by first adding κ many reals, and then we collapse λ to κ^+ . However just simply adding reals (say, with a Cohen forcing) does not work.

We need to add the reals in a way such that we can extend some elementary embeddings for κ and λ in some nice extension.

Assume GCH and assume there exists $\kappa < \lambda$ supercompact cardinals. We construct W such that

$$W\models "(*)^+_{\leq 2^{\aleph_0}} \land (*)^-_{<2^{\aleph_0}} \land 2^{\aleph_0} \text{ carries a } \sigma\text{-saturated ideal "}$$

We construct W by first adding κ many reals, and then we collapse λ to κ^+ . However just simply adding reals (say, with a Cohen forcing) does not work.

We need to add the reals in a way such that we can extend some elementary embeddings for κ and λ in some nice extension.

Let $f : \kappa \longrightarrow \kappa$ be a Laver function such that $\forall \xi < \kappa, f(\xi) > \xi$ and for every cardinal $\eta \ge \lambda$ there is an η -supercompact embedding $j : V \longrightarrow M$ for κ such that

$$j(f)(\kappa) = \lambda$$

Since κ is supercompact, the set

 $S := \{ \alpha < \kappa : \alpha \text{ is a Mahlo cardinal and } \forall \beta < \alpha, f(\beta) < \alpha \}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $f : \kappa \longrightarrow \kappa$ be a Laver function such that $\forall \xi < \kappa, f(\xi) > \xi$ and for every cardinal $\eta \ge \lambda$ there is an η -supercompact embedding $j : V \longrightarrow M$ for κ such that

$$j(f)(\kappa) = \lambda$$

Since κ is supercompact, the set

 $S := \{ \alpha < \kappa : \alpha \text{ is a Mahlo cardinal and } \forall \beta < \alpha, f(\beta) < \alpha \}$ is stationary in κ .

Rough description of the iteration

- at step α ∈ S, we collapse (via usual Lévy collapse) all the cardinals between α and f(α);
- at every other step, we add a Cohen real;
- This iteration can be seen as having "two parts":
 - 1 the Levy collapse part is an Easton support iteration;
 - and the adding Cohen Reals part is a finite support product.

- at step α ∈ S, we collapse (via usual Lévy collapse) all the cardinals between α and f(α);
- at every other step, we add a Cohen real;
- This iteration can be seen as having "two parts":
 - 1 the Levy collapse part is an Easton support iteration;
 - and the adding Cohen Reals part is a finite support product.

- at step α ∈ S, we collapse (via usual Lévy collapse) all the cardinals between α and f(α);
- at every other step, we add a Cohen real;
- This iteration can be seen as having "two parts":
 - 1 the Levy collapse part is an Easton support iteration;
 - and the adding Cohen Reals part is a finite support product.

- at step α ∈ S, we collapse (via usual Lévy collapse) all the cardinals between α and f(α);
- at every other step, we add a Cohen real;
- This iteration can be seen as having "two parts":
 - the Levy collapse part is an Easton support iteration;
 and the adding Cohen Reals part is a finite support product.
We define a mixed support iteration $\overrightarrow{\mathbb{P}} = \langle \mathbb{P}_{\alpha} : \alpha \leq \kappa \rangle$: (this iteration is a modification of a construction by Krueger)

- at step α ∈ S, we collapse (via usual Lévy collapse) all the cardinals between α and f(α);
- at every other step, we add a Cohen real;
- This iteration can be seen as having "two parts":
 - 1 the Levy collapse part is an Easton support iteration;
 - and the adding Cohen Reals part is a finite support product.

We define a mixed support iteration $\overrightarrow{\mathbb{P}} = \langle \mathbb{P}_{\alpha} : \alpha \leq \kappa \rangle$: (this iteration is a modification of a construction by Krueger)

- at step α ∈ S, we collapse (via usual Lévy collapse) all the cardinals between α and f(α);
- at every other step, we add a Cohen real;
- This iteration can be seen as having "two parts":
 - 1 the Levy collapse part is an Easton support iteration;
 - and the adding Cohen Reals part is a finite support product.

We have

$\Vdash_{\mathbb{P}_{\kappa}} ``\kappa \text{ is weakly Mahlo and } 2^{\aleph_0} = \kappa "$

Furthermore, \mathbb{P}_{κ} is designed to have the following property:

Lemma (Key lemma)

For any $\eta \ge \lambda$, there is an η -supercompact embedding $j: V \longrightarrow M$ with critical point κ such that in M we have: **1** $\mathbb{P}_{\kappa} * \operatorname{Col}(\kappa, < \lambda) < j(\mathbb{P}_{\kappa});$ **2** $\| \mathbb{P}_{\kappa} * \operatorname{Col}(\kappa, < \lambda) \quad "j(\mathbb{P}_{\kappa}) / \dot{G}_{\mathbb{P}_{\kappa} * \operatorname{Col}(\kappa, < \lambda)}$ is proper". In particular, $j(\overrightarrow{\mathbb{P}})$ is an iteration of length $j(\kappa)$ such that $j(\overrightarrow{\mathbb{P}})_{\kappa+1} = \mathbb{P}_{\kappa} * \operatorname{Col}(\kappa, < \lambda).$

・ロト・西ト・ヨト・ヨー うへぐ

We have

$$\Vdash_{\mathbb{P}_{\kappa}}$$
 " κ is weakly Mahlo and $2^{\aleph_0} = \kappa$ "

Furthermore, \mathbb{P}_{κ} is designed to have the following property:

Lemma (Key lemma)

For any $\eta \geq \lambda$, there is an η -supercompact embedding $j: V \longrightarrow M$ with critical point κ such that in M we have: 1 $\mathbb{P}_{\kappa} * \operatorname{Col}(\kappa, < \lambda) < j(\mathbb{P}_{\kappa});$ 2 $\| \mathbb{P}_{\kappa} * \operatorname{Col}(\kappa, < \lambda) "j(\mathbb{P}_{\kappa}) / \dot{G}_{\mathbb{P}_{\kappa}} * \operatorname{Col}(\kappa, < \lambda)$ is proper".

In particular, $j(\overline{\mathbb{P}})$ is an iteration of length $j(\kappa)$ such that

$$j(\overrightarrow{\mathbb{P}})_{\kappa+1} = \mathbb{P}_{\kappa} * \operatorname{Col}(\kappa, < \lambda).$$

We have

$$\models_{\mathbb{P}_{\kappa}}$$
 " κ is weakly Mahlo and $2^{\aleph_0} = \kappa$ "

Furthermore, \mathbb{P}_{κ} is designed to have the following property:

Lemma (Key lemma)

For any $\eta \geq \lambda$, there is an η -supercompact embedding $j: V \longrightarrow M$ with critical point κ such that in M we have: 1 $\mathbb{P}_{\kappa} * \operatorname{Col}(\kappa, < \lambda) < j(\mathbb{P}_{\kappa});$ 2 $\| \mathbb{P}_{\kappa} * \operatorname{Col}(\kappa, < \lambda)$ " $j(\mathbb{P}_{\kappa}) / \dot{G}_{\mathbb{P}_{\kappa} * \operatorname{Col}(\kappa, < \lambda)}$ is proper".

In particular, $j(\overrightarrow{\mathbb{P}})$ is an iteration of length $j(\kappa)$ such that

$$j(\overrightarrow{\mathbb{P}})_{\kappa+1} = \mathbb{P}_{\kappa} * \mathsf{Col}(\kappa, < \lambda).$$

- Our final model shall be $W := V^{\mathbb{P}_{\kappa} * \mathsf{Col}(\kappa, <\lambda)}$.
- In W, we have $2^{\aleph_0} = \kappa$ and $(2^{\aleph_0})^+ = \lambda$.
- Since \mathbb{P}_{κ} is small, λ remains supercompact in $V^{\mathbb{P}_{\kappa}}$.
- Like we argued before, by collapsing λ to become κ⁺ we get W ⊨ "(*)⁺_{<λ}".
- By the key lemma, we can extend some supercompact embedding at *κ* in some proper extension of *W*.
- It follows that $(*)^-_{<\kappa}$ holds in W.

$$W\models "(*)^+_{\leq 2^{\aleph_0}}\wedge (*)^-_{<2^{\aleph_0}}"$$

- Our final model shall be $W := V^{\mathbb{P}_{\kappa} * \mathsf{Col}(\kappa, <\lambda)}$.
- In *W*, we have $2^{\aleph_0} = \kappa$ and $(2^{\aleph_0})^+ = \lambda$.
- Since \mathbb{P}_{κ} is small, λ remains supercompact in $V^{\mathbb{P}_{\kappa}}$.
- Like we argued before, by collapsing λ to become κ⁺ we get W ⊨ "(*)⁺_{<λ}".
- By the key lemma, we can extend some supercompact embedding at *κ* in some proper extension of *W*.
- It follows that $(*)^-_{<\kappa}$ holds in W.

$$W\models "(*)_{\leq 2^{\aleph_0}}^+ \wedge (*)_{<2^{\aleph_0}}^- "$$

- Our final model shall be $W := V^{\mathbb{P}_{\kappa} * \mathsf{Col}(\kappa, <\lambda)}$.
- In *W*, we have $2^{\aleph_0} = \kappa$ and $(2^{\aleph_0})^+ = \lambda$.
- Since \mathbb{P}_{κ} is small, λ remains supercompact in $\mathcal{V}^{\mathbb{P}_{\kappa}}$.
- Like we argued before, by collapsing λ to become κ⁺ we get W ⊨ "(*)⁺_{<λ}".
- By the key lemma, we can extend some supercompact embedding at *κ* in some proper extension of *W*.
- It follows that $(*)^-_{<\kappa}$ holds in W.

$$W\models "(*)_{\leq 2^{\aleph_0}}^+ \wedge (*)_{<2^{\aleph_0}}^- "$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Our final model shall be $W := V^{\mathbb{P}_{\kappa} * \mathsf{Col}(\kappa, <\lambda)}$.
- In *W*, we have $2^{\aleph_0} = \kappa$ and $(2^{\aleph_0})^+ = \lambda$.
- Since \mathbb{P}_{κ} is small, λ remains supercompact in $\mathcal{V}^{\mathbb{P}_{\kappa}}$.
- Like we argued before, by collapsing λ to become κ⁺ we get W ⊨ "(*)⁺_{<λ}".
- By the key lemma, we can extend some supercompact embedding at κ in some proper extension of W.
- It follows that $(*)^-_{<\kappa}$ holds in W.

$$W\models "(*)_{\leq 2^{\aleph_0}}^+ \wedge (*)_{<2^{\aleph_0}}^- "$$

- Our final model shall be $W := V^{\mathbb{P}_{\kappa} * \mathsf{Col}(\kappa, <\lambda)}$.
- In *W*, we have $2^{\aleph_0} = \kappa$ and $(2^{\aleph_0})^+ = \lambda$.
- Since \mathbb{P}_{κ} is small, λ remains supercompact in $\mathcal{V}^{\mathbb{P}_{\kappa}}$.
- Like we argued before, by collapsing λ to become κ⁺ we get W ⊨ "(*)⁺_{<λ}".
- By the key lemma, we can extend some supercompact embedding at κ in some proper extension of W.
- It follows that $(*)^-_{<\kappa}$ holds in W.

$$W\models "(*)^+_{\leq 2^{\aleph_0}}\wedge (*)^-_{<2^{\aleph_0}}"$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Our final model shall be $W := V^{\mathbb{P}_{\kappa} * \mathsf{Col}(\kappa, <\lambda)}$.
- In *W*, we have $2^{\aleph_0} = \kappa$ and $(2^{\aleph_0})^+ = \lambda$.
- Since \mathbb{P}_{κ} is small, λ remains supercompact in $\mathcal{V}^{\mathbb{P}_{\kappa}}$.
- Like we argued before, by collapsing λ to become κ⁺ we get W ⊨ "(*)⁺_{<λ}".
- By the key lemma, we can extend some supercompact embedding at κ in some proper extension of W.
- It follows that $(*)^{-}_{<\kappa}$ holds in W.

$$W\models "(*)_{\leq 2^{\aleph_0}}^+ \wedge (*)_{<2^{\aleph_0}}^- "$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Our final model shall be $W := V^{\mathbb{P}_{\kappa} * \mathsf{Col}(\kappa, <\lambda)}$.
- In *W*, we have $2^{\aleph_0} = \kappa$ and $(2^{\aleph_0})^+ = \lambda$.
- Since \mathbb{P}_{κ} is small, λ remains supercompact in $\mathcal{V}^{\mathbb{P}_{\kappa}}$.
- Like we argued before, by collapsing λ to become κ⁺ we get W ⊨ "(*)⁺_{<λ}".
- By the key lemma, we can extend some supercompact embedding at κ in some proper extension of W.
- It follows that $(*)^{-}_{<\kappa}$ holds in W.

$$W\models ``(*)^+_{\leq 2^{\aleph_0}} \wedge (*)^-_{< 2^{\aleph_0}} "$$

We also sketch the following proof:

Lemma

Assume $V \models$ "GCH". Then:

 $\Vdash_{\mathbb{P}_{\kappa}*\mathsf{Col}(\kappa,<\lambda)} ``\kappa = 2^{\aleph_0} \text{ carries a } \sigma\text{-saturated ideal}"$

Let $j: V \longrightarrow M$ be a λ -supercompact embedding, $\operatorname{crit}(j) = \kappa$ such that $j(f)(\kappa) = \lambda$, like before. Let G be a $\mathbb{P}_{\kappa} * \operatorname{Col}(\kappa, < \lambda)$ -generic over V.

Lemma

In V[G], $j(\mathbb{P}_{\kappa} * \text{Col}(\kappa, < \lambda))/G$ is a projection of $\mathbb{R} \times \mathbb{S}$, where \mathbb{S} is ccc and \mathbb{R} is $< \lambda^+$ -closed (in M[G]).

We also sketch the following proof:

Lemma

Assume $V \models$ "GCH". Then:

$$\Vdash_{\mathbb{P}_{\kappa}*\mathsf{Col}(\kappa,<\lambda)}$$
 " $\kappa = 2^{\aleph_0}$ carries a σ -saturated ideal"

Let $j: V \longrightarrow M$ be a λ -supercompact embedding, $\operatorname{crit}(j) = \kappa$ such that $j(f)(\kappa) = \lambda$, like before. Let G be a $\mathbb{P}_{\kappa} * \operatorname{Col}(\kappa, < \lambda)$ -generic over V.

Lemma

In V[G], $j(\mathbb{P}_{\kappa} * \text{Col}(\kappa, < \lambda))/G$ is a projection of $\mathbb{R} \times \mathbb{S}$, where \mathbb{S} is ccc and \mathbb{R} is $< \lambda^+$ -closed (in M[G]).

We also sketch the following proof:

Lemma

Assume $V \models$ "GCH". Then:

$$\Vdash_{\mathbb{P}_{\kappa}*\mathsf{Col}(\kappa,<\lambda)}$$
 " $\kappa=2^{\aleph_0}$ carries a σ -saturated ideal"

Let $j: V \longrightarrow M$ be a λ -supercompact embedding, $\operatorname{crit}(j) = \kappa$ such that $j(f)(\kappa) = \lambda$, like before. Let G be a $\mathbb{P}_{\kappa} * \operatorname{Col}(\kappa, < \lambda)$ -generic over V.

Lemma

In V[G], $j(\mathbb{P}_{\kappa} * \text{Col}(\kappa, < \lambda))/G$ is a projection of $\mathbb{R} \times \mathbb{S}$, where \mathbb{S} is ccc and \mathbb{R} is $< \lambda^+$ -closed (in M[G]).

Lemma

There is $H \in V[G * H_{\mathbb{S}}]$ such that j can be extended into an elementary embedding $J : V[G] \longrightarrow M[G * H]$.

Therefore, in V[G], we can prove define

$$I := \{ x \subseteq \kappa : \Vdash_{\mathbb{S}} `` \kappa \notin J(x)" \}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Since S is ccc, it follows that I is a σ -saturated ideal.

Lemma

There is $H \in V[G * H_{\mathbb{S}}]$ such that j can be extended into an elementary embedding $J : V[G] \longrightarrow M[G * H]$.

Therefore, in V[G], we can prove define

$$I := \{ x \subseteq \kappa : \Vdash_{\mathbb{S}} `` \kappa \notin J(x)" \}$$

Since \mathbb{S} is ccc, it follows that I is a σ -saturated ideal.

Lemma

There is $H \in V[G * H_{\mathbb{S}}]$ such that j can be extended into an elementary embedding $J : V[G] \longrightarrow M[G * H]$.

Therefore, in V[G], we can prove define

$$I := \{ x \subseteq \kappa : \Vdash_{\mathbb{S}} `` \kappa \not\in J(x)" \}$$

Since \mathbb{S} is ccc, it follows that I is a σ -saturated ideal.

Lemma

There is $H \in V[G * H_{\mathbb{S}}]$ such that j can be extended into an elementary embedding $J : V[G] \longrightarrow M[G * H]$.

Therefore, in V[G], we can prove define

$$I := \{x \subseteq \kappa : \Vdash_{\mathbb{S}} `` \kappa \not\in J(x)"\}$$

Since S is ccc, it follows that I is a σ -saturated ideal.

Thank you very much!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

・ロト ・御ト ・モト・・モト

1

Sean Cox.

The diagonal reflection principle. Proc. Amer. Math. Soc., 140(8):2893–2902, 2012.

Bernhard König. Generic compactness reformulated. Arch. Math. Logic, 43(3):311–326, 2004.

John Krueger. A general Mitchell style iteration.

MLQ Math. Log. Q., 54(6):641-651, 2008.