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@ Stationary Logic and reflection principles



For every regular n > R,, every stationary S C [n]™ and every
X € [n]™, there is Y € [n]™ such that

e XCY,

® SN [Y] is stationary in [Y]Y.

(in Jech's book, this principle is called just RP)
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Weak Reflection Principle

Definition (WRP)
For every regular n > R,, every stationary S C [n]™ and every
X € [0, there is Y € [n]™ such that
o XCY,
® SN [Y]Y is stationary in [Y].
(in Jech’s book, this principle is called just RP)

WRP imposes the following boundary for the size of the
continuum:

Theorem (Todorcevic)

WRP implies 2% < R,.



e \WRP is consistent with CH, because it holds if we Levy
collapse a supercompact cardinal to N,.
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collapse a supercompact cardinal to N,.

e WRP is also compatible with =CH since WRP follows
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® Now we present a characterization of WRP:



e \WRP is consistent with CH, because it holds if we Levy
collapse a supercompact cardinal to N,.

e WRP is also compatible with =CH since WRP follows
from MM, and MM=> 2% = X,.

® Now we present a characterization of WRP:

Lemma

WRP is equivalent to the following statement:
For any uncountable cardinal ), any stationary S C [H(n)]™°
and any structure 2 = (H(n), €, ...) in signature of size
< Ny, there is M € [H(n)]™ such that
® Ay <2
@® S N [M]* is stationary in [M]%.



Define the weak second order logic £*° as follows:
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Define the weak second order logic £*¢ as follows:

e first order variables (lowercase letters) x, y, z

«O0>» «F» «E)r» «E>»
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Stationary Logics-1

Define the weak second order logic £ as follows:
e first order variables (lowercase letters) x,y, z, .. ;

e weak second order variables (capital letters) X, Y, Z, ...
to be interpreted as countable subsets of the underlying
set of a structure;
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e we introduce in this logic the symbol “&™:
xeX shall be interpreted as x € X, and it must be used
with a first and a second order variable respectively.



Stationary Logics-1

Define the weak second order logic £ as follows:
e first order variables (lowercase letters) x,y, z, .. ;

e weak second order variables (capital letters) X, Y, Z, ...
to be interpreted as countable subsets of the underlying
set of a structure;

e first order quantifiers Vx, dx;

won

e we introduce in this logic the symbol “&™:
xeX shall be interpreted as x € X, and it must be used
with a first and a second order variable respectively.

Define also £¥!" by adding the second order quantifiers
VX,3Y to L.



Stationary Logics-2

Now define £52, by adding to £¥° a new quantifier “statX" for
second order variables to be interpreted as follows:

Let o be an £3%,-formula. statX(X) means that ¢ holds for
stationary many X, i.e. given a structure 2 = (A,...) we
define

A = “statXp(X)”

{B e [A* : A E“p(B)”"} is stationary in [A]*



Stationary Logics-2

Now define £52, by adding to £¥° a new quantifier “statX" for
second order variables to be interpreted as follows:

Let o be an £3%,-formula. statX(X) means that ¢ holds for
stationary many X, i.e. given a structure 2 = (A,...) we
define

A = “statXp(X)”

{B e [A* : A E“p(B)”"} is stationary in [A]*

In L3, we can also define aaX (for almost all X) the dual
quantifier for statX. aaX¢(X) is an abbreviation for
—statX—p(X). In other words:

A = “aaXp(X)”

)
{B € [A]* : 2 =“p(B)”} contains a club subset of [A]*



L-elementary substructure

Let £ be a logic (or family of formulas in a logic), structures
24, B in the same signature, B C 2. We say that

B <A

(B is an L-elementary substructure of ) iff: for all formulas
O(X0y -+ s Xny X0y« - -, Xm) in L, for all by, ..., b, first order
objects of B, all By, ..., B, second order objects of B, we
have

%):“@(bo7...,Bo,...)7’<:>Ql’:L‘QO(bo,...,B()?...)”



Similarly, we write
A=<, B
iff for all formulas ¢ in £ which have only first order free
variables and for all by, ... b, first order objects in 8, we have
B =" ¢(bo,

Lbn)" e A E (b, ..., bn)"
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Let £ be a logic and p an infinite cardinal. Define:

For any structure 2l of countable signature of cardinality > p,

there is B <, A of cardinality < u.

«O> «F>r «=>»

<
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Strong Downwards Léwenheim-Skolem reflection

Let £ be a logic and p an infinite cardinal. Define:
SDLS(L, < 1)

For any structure %A of countable signature of cardinality > p,
there is B <, 2 of cardinality < p.

Similarly, define:
SDLS™ (L, < p)

For any structure 2l of countable signature of cardinality > p,
there is B <. 2 of cardinality < p.



Strong Downwards Léwenheim-Skolem reflection

Let £ be a logic and p an infinite cardinal. Define:
SDLS(L, < 1)

For any structure %A of countable signature of cardinality > p,
there is B <, 2 of cardinality < p.

Similarly, define:
SDLS™ (L, < p)

For any structure 2l of countable signature of cardinality > p,
there is B <. 2 of cardinality < p.

This gives us a variety of different reflection statements.



Example

SDLS~ (LY, < W) is just the usual Downward
Léwenheim-Skolem Theorem for the first order logic, and thus
holds in ZFC.



SDLS™ (LM, < V) is just the usual Downward

Léwenheim-Skolem Theorem for the first order logic, and thus
holds in ZFC.

SDLS= (LR < R,) implies CH.
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Example

SDLS~ (LY, < W) is just the usual Downward
Léwenheim-Skolem Theorem for the first order logic, and thus
holds in ZFC.

Example
SDLS— (LY < N,) implies CH.

Rough idea: we can use the following “trick” to code second
order objects into first order objects. Consider the structure
A= (wUP(w),w, E), where E = {(n,a) : n€ a Cw}.
Consider also the formula

v =VX(X Cw — IxVn € w(neX < nEx))

Clearly 2( |=“1”. By SDLS™ (LM < R,), there is some
B < on A (B =(B,...),|B] <X,) such that B =“¢”.

LRl



Example

SDLS~ (LY, < W) is just the usual Downward
Léwenheim-Skolem Theorem for the first order logic, and thus
holds in ZFC.

Example
SDLS— (LY < N,) implies CH.

Rough idea: we can use the following “trick” to code second
order objects into first order objects. Consider the structure
A= (wUP(w),w, E), where E = {(n,a) : n€ a Cw}.
Consider also the formula

v =VX(X Cw — IxVn € w(neX < nEx))

Clearly 2 = “4)”. By SDLS™(L™!, < R;), there is some
B —<ZN0’“ A (% = <B, .. .>, |B| < NQ) such that 8B ): tc¢77.

Then P(w) C B, thus 2% < R,.



Actually, we have much more:

Lemma
In ZFC, the following are equivalent:

o CH;

@ SDLS(LY, < N,);

© SDLS (LM < N,);

@ SDLS(LM < ,);

® SDLS (LY, < N,) implies WRP.

® GRPZ, (Game Reflection Principle by Bernard Kénig)
implies SDLS(LS{, < ).

u]
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Lemma
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Actually, we have much more:

Lemma
In ZFC, the following are equivalent:
o CH,
@® SDLS(L™, < Ny),
© SDLS (LRl < R,);
O SDLS(LY < X,);

Lemma

® (Magidor, 2016) SDLS~(L,, < X,) implies FRP;
® SDLS (L%, < Ny) implies WRP.



Actually, we have much more:

Lemma
In ZFC, the following are equivalent:
o CH,
@® SDLS(LM < N,);
© SDLS (LRl < R,);
O SDLS(LY < X,);

Lemma

® (Magidor, 2016) SDLS~(L,, < X,) implies FRP;

® SDLS (L%, < Ny) implies WRP.

® GRPZ, (Game Reflection Principle by Bernard Kénig)
implies SDLS(LY! < k).



Therefore we have
SDLS™(L£L,, < Np) = WRP = 2% < N,
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Therefore we have
SDLS™(L£L,, < Np) = WRP = 2% < N,

Similarly to WRP, SDLS™ (L3, < Ry) is compatible with both

2N° = N]_ and 2N0 = N2.
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SDLS™ (Estat, k) and the continuum

Therefore we have

SDLS™ (LM, < Ny) = WRP = 2% <R,

Similarly to WRP, SDLS—(£52,, < R) is compatible with both
2N0 = Nl and 2N0 = Ng.

Furthermore, for x > Ry, SDLS™ (L3, < ) imposes a stricter
restriction to the size of the continuum:



SDLS™ (Estat, k) and the continuum

Therefore we have

SDLS™ (LM, < Ny) = WRP = 2% <R,

Similarly to WRP, SDLS—(£52,, < R) is compatible with both
2N0 = Nl and 2N0 = Ng.

Furthermore, for x > Ry, SDLS™ (L3, < ) imposes a stricter
restriction to the size of the continuum:

Lemma
For any k > Ny, SDLS™ (L3, < k) implies 2% < r.



SDLS_(E?t%t, < k) and the continuum
Therefore we have

SDLS™ (LM, < Ny) = WRP = 2% <R,

Similarly to WRP, SDLS—(£52,, < R) is compatible with both
2N° = Nl and 2N0 = N2.

Furthermore, for x > Ry, SDLS™ (L3, < ) imposes a stricter
restriction to the size of the continuum:

Lemma

For any k > Ny, SDLS™ (L3, < k) implies 2% < r.
In particular, since SDLS(ﬁNO, < Ny) < CH, we have :
Corollary

For any r > Ry, SDLS(LL,, < k) implies 2% < k.



Recall the previous characterization of WRP:

WRP equivalent to:

For any uncountable cardinal ), stationary S C [H(\)]* and
structure 2 = (H(\), €, ...) in signature of size < Ny, there is
M € [H(N)]™ such that

0 Ay <2

® S N [M]M is stationary in [M]Y.



Recall the previous characterization of WRP:

WRP equivalent to:

For any uncountable cardinal ), stationary S C [H(\)]* and
structure 2 = (H(\), €, ...) in signature of size < Ny, there is
M € [H(N)]™ such that

0 Ay <2

® S N [M]M is stationary in [M]Y.

We now present some reflection statements which can also
characterize some of the SLDS statements.



Let x > N, be a regular cardinal. Define:

(%)<
Given any 7 > k, for any structure 2 = (H(n), €,...) in
countable signature and any family S = (S, : a € H(n)) of
stationary subsets of [H(n)]", there is some N € [H(n)]<"
satisfying:

0 Ay <2,

® for each a € N, S,N[N]™ is an stationary subset of [N]*.



Let k > N, be a regular cardinal. Define:

(%) <x

Given any 7 > k, for any structure 2 = (H(n), €,...) in
countable signature and any family S = (S, : a € H(n)) of
stationary subsets of [H(n)]*°, there is some N € [H(n)]<*
satisfying:

® N is internally club, i.e., N contains a club subset of

[N
0 Ay <2,
® for each a € N, S,N[N]™ is an stationary subset of [N]®.



Let k > N, be a regular cardinal. Define:

QM
Given any 7 > k, for any structure 2 = (H(n), €,...) in
countable signature and any family S = (S, : a € H(n)) of
stationary subsets of [#(n)]™, there is some N € [H(n)]<"
satisfying:

@ [N C N,

0 Ay <2,

® for each a € N, S,N[N]™ is an stationary subset of [N]%.
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Let k > N, be a regular cardinal. Define:

QM
Given any 7 > k, for any structure 2 = (H(n), €,...) in
countable signature and any family S = (S, : a € H(n)) of
stationary subsets of [#(n)]™, there is some N € [H(n)]<"
satisfying:

@ [N C N,

0 Ay <2,

® for each a € N, S,N[N]™ is an stationary subset of [N]%.

Clearly (%)%, = (¥)<x = (¥)Z,..

Similarly to WRP, for any regular k > N,, the consistency of
()%« (denote by (x)Z,) can be obtained by Levy collapsing a
supercompact cardinal bigger than x to become x™.



Diagonal Reflection Principle

(%)<, is a variation of the following principle introduced by
Sean Cox.

Let C be a class of sets of cardinality N; and 6 > N be a
cardinal of uncountable cofinality.

DRP(6,C)
There are stationarily many M € [H((6%)")]™ such that
® MNH(O) €C;

® for all R € M, if R is a stationary subset of [f]"°, then
R N[0 N M]X is stationary in [0 N M]%o.



Diagonal Reflection Principle

(%)<, is a variation of the following principle introduced by
Sean Cox.

Let C be a class of sets of cardinality N; and 6 > N be a
cardinal of uncountable cofinality.

DRP(6,C)
There are stationarily many M € [H((6%)")]™ such that
® MNH(O) €C;

® for all R € M, if R is a stationary subset of [f]"°, then
R N[0 N M) is stationary in [0 N M]%°.

Lemma
(*)<x, & DRP(0,1C,,) holds for all regular 6 > X,

where IC,,; is the class of all internally club sets of size N;.



For k > Ny we have:

SDLS™ ( Lo

stats

<K) e (¥)en

(O S <=

<

Q>



For k > N, we have:

SDLS™ (Lot < k) & (¥)<x

SDLS(LY%) < K

) & (+)<,
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For k > N, we have:

SDLS™ (Lot < k) & (¥)<x

SDLS(LES!, < k) < (%)%,

<
In particular, for the case where kK = N5, we have

SDLS(LM

stat?

< Np) & (k) <n, + CH
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@ Consistency Result



Notice that SDLS(L5S,, < 2%°) is always false (thus (%)L, s
also false).

MM implies 2% = &, and also implies (x)Zy,;

define W := vC!(«2:<}) By collapsing A to become X3
we obtain W |=“ (%)L, "
Col(wa, < A) preserves (*)_y,;

then, indeed W |=“ (%) _y, A (*)zz\g AR — N,
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Consistency Result

Notice that SDLS(LL2,, < 2%°) is always false (thus (*):2% is
also false). However the weaker principle (x)_,y, is consistent.

Actually, we have a simple example of a model W such that
w ’: « (*);2}%0 N (*);2% "
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Consistency Result

Notice that SDLS(LL2,, < 2%°) is always false (thus (*):2N0 is

also false). However the weaker principle (x)_,y, is consistent.

Actually, we have a simple example of a model W such that
W= () S A (F) o ™

Proof.

e Start assuming V = “ MM A 3\ supercompact cardinal ”’;

® MM implies 2" = X, and also implies (%), ;

e define W := V®!(«2<}) By collapsing A to become N3
we obtain W |=“ (x )<N3 7
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Consistency Result

Notice that SDLS(L52,, < 2%°) is always false (thus (*)* o, IS
also false). However the weaker principle (x)_,y, is consistent.
Actually, we have a simple example of a model W such that

w ’; ¢ ( ) <2%o (*);2!*0 7

Proof.

e Start assuming V = “ MM A 3\ supercompact cardinal ”’;
® MM implies 2" = X, and also implies (%), ;

define W := vCl(w2,<}) By collapsing A to become N3
we obtain W |=“ (x )<N3 7

Col(wz, < A) preserves (*)_y.;

then, indeed W = “ (%), A (%) 5, A 2% =057



For this proof we needed 2% = R, and (2% )" = N3. This rises
the question: is (x)[,s, A (*)_,x, consistent with 2% being
arbitrarily big? Is it consistent with the continuum having
some large cardinal property?



For this proof we needed 2% = R, and (2% )" = N3. This rises
the question: is (x)[,s, A (*)_,x, consistent with 2% being
arbitrarily big? Is it consistent with the continuum having
some large cardinal property?

Yes



Assume GCH and assume there exists k < \ supercompact
cardinals. We construct W such that

W =< (%) D A () o A 2% carries a o-saturated ideal”

«O> «F>r «=>»

« =)
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Sketch of the proof

Assume GCH and assume there exists k < A supercompact
cardinals. We construct W such that

W« (*);NO A (%) g A 2% carries a o-saturated ideal”
We construct W by first adding x many reals, and then we

collapse A to k™. However just simply adding reals (say, with a
Cohen forcing) does not work.



Sketch of the proof

Assume GCH and assume there exists k < A supercompact
cardinals. We construct W such that
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We construct W by first adding x many reals, and then we
collapse A to k™. However just simply adding reals (say, with a
Cohen forcing) does not work.

We need to add the reals in a way such that we can extend
some elementary embeddings for x and A in some nice
extension.



Sketch of the proof

Assume GCH and assume there exists k < A supercompact
cardinals. We construct W such that

W E“(x )<2N0 (%) Z e A 2% carries a o-saturated ideal”

We construct W by first adding x many reals, and then we
collapse A to k™. However just simply adding reals (say, with a
Cohen forcing) does not work.

We need to add the reals in a way such that we can extend
some elementary embeddings for x and A in some nice
extension.

For this we shall construct a forcing iteration.



Let f : kK —> K be a Laver function such that
V¢ < K, f(€) > £ and for every cardinal > X there is an
n-supercompact embedding j : V — M for x such that

J()(R) = A
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Preparation

Let f : Kk —> K be a Laver function such that
V¢ < K, f(€) > £ and for every cardinal > X there is an
n-supercompact embedding j : V — M for x such that

J(F)(K) = A
Since k is supercompact, the set
S:={a <k : ais a Mahlo cardinal and Vj3 < o, f(3) < a}

is stationary in K.



We define a mixed support iteration T - (P, : a <K):

(this iteration is a modification of a construction by Krueger)

«O> «F>r «=>»

« =)
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Rough description of the iteration

We define a mixed support iteration P = (P, : a < k):
(this iteration is a modification of a construction by Krueger)

® at step o € S, we collapse (via usual Lévy collapse) all
the cardinals between « and f(«);
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® at step o € S, we collapse (via usual Lévy collapse) all
the cardinals between « and f(«);

® at every other step, we add a Cohen real;
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Rough description of the iteration

We define a mixed support iteration P = (P, : a < k):
(this iteration is a modification of a construction by Krueger)

® at step o € S, we collapse (via usual Lévy collapse) all
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Rough description of the iteration

We define a mixed support iteration T - (P, : a <K):
(this iteration is a modification of a construction by Krueger)
® at step o € S, we collapse (via usual Lévy collapse) all

the cardinals between « and f(«);
® at every other step, we add a Cohen real;
® This iteration can be seen as having “two parts':

@ the Levy collapse part is an Easton support iteration;
® and the adding Cohen Reals part is a finite support
product.



We have

5, & is weakly Mahlo and 2% = £ ”

«O> «Fr <> «E>»
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Features of P,

We have

5, & is weakly Mahlo and 2% = £ ”

Furthermore, P, is designed to have the following property:
Lemma (Key lemma)

For any n > ), there is an n-supercompact embedding

Jj: V. — M with critical point r such that in M we have:
@ P. « Col(k, < \) <j(P,),
(2] |}_PK*CO|(H,<>\)“j(PI{)/GPK,*COl(H,<)\) is proper”'



Features of P,

We have

5, & is weakly Mahlo and 2% = £ ”

Furthermore, P, is designed to have the following property:
Lemma (Key lemma)

For any n > ), there is an n-supercompact embedding
Jj: V. — M with critical point r such that in M we have:

@ P. « Col(k, < \) <j(P,),
@ |Fp.Col(r, <)) J(Pr)/ Gp.xCol(n,<n) iS proper”.

—
In particular, j(P) is an iteration of length j(x) such that

j(ﬁ),ﬁl =P, x Col(k, < ).



e Our final model shall be W := V/Er*Col(x,<A)

«4O>» «Fr «=)r» «E)»
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e Our final model shall be W := V/Er*Col(x,<A)

® In W, we have 2% = x and (2%)" = X
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e Our final model shall be W := V/Er*Col(x,<A)

® In W, we have 2% = x and (2%)" = X

® Since P, is small, \ remains supercompact in V=,

«O0>» «F» «E)r» «E>»
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e Our final model shall be W = V/Pr*Col(s,<A),
® In W, we have 2% = x and (2%)* = ).
® Since P, is small, \ remains supercompact in V=,
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Sketch of the proof

e Qur final model shall be W = V/PwrCol(x,<A)

® In W, we have 2% = x and (2%)" = \.

® Since P, is small, \ remains supercompact in V=,

e |ike we argued before, by collapsing A to become ™ we
get W E“(x)I,”.

<A
® By the key lemma, we can extend some supercompact
embedding at x in some proper extension of W.

e |t follows that (x), holds in W.

Therefore indeed

W ): « (*);ZNO A\ (*);2?“0 ”
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We also sketch the following proof:

Lemma
Assume V = GCH”. Then:

H‘Pn*cmo{,d)“ k = 2% carries a o-saturated ideal”

Let j: V — M be a A-supercompact embedding, crit(j) = &
such that j(f)(k) = A, like before.
Let G be a P, * Col(k, < \)-generic over V.

Lemma

In V[G], j(P, % Col(k,< X))/G is a projection of R x S,
where S is ccc and R is < \T-closed (in M[G]).
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Let Hs be a S-generic over V[G]. It follows from the
< AT-closedness of R that

Lemma

There is H € V[G % Hs] such that j can be extended into an
elementary embedding J : V[G] — M|[G x H].

Therefore, in V[G], we can prove define

I'={xCkr: |Fs“ke&gJx)"}

Since S is ccc, it follows that / is a o-saturated ideal. [



Thank you very much!
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