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1 Stationary Logic and reflection principles

2 Consistency Result



Weak Reflection Principle

Definition (WRP)

For every regular η ≥ ℵ2, every stationary S ⊆ [η]ℵ0 and every
X ∈ [η]ℵ1 , there is Y ∈ [η]ℵ1 such that

1 X ⊆ Y ;
2 S ∩ [Y ]ℵ0 is stationary in [Y ]ℵ0 .

(in Jech’s book, this principle is called just RP)
WRP imposes the following boundary for the size of the
continuum:

Theorem (Todorčević)

WRP implies 2ℵ0 ≤ ℵ2.
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• WRP is consistent with CH, because it holds if we Levy
collapse a supercompact cardinal to ℵ2.
• WRP is also compatible with ¬CH since WRP follows

from MM, and MM⇒ 2ℵ0 = ℵ2.
• Now we present a characterization of WRP:

Lemma
WRP is equivalent to the following statement:
For any uncountable cardinal η, any stationary S ⊆ [H(η)]ℵ0

and any structure A = 〈H(η),∈, . . .〉 in signature of size
≤ ℵ1, there is M ∈ [H(η)]ℵ1 such that

1 A�M ≺ A;
2 S ∩ [M]ℵ0 is stationary in [M]ℵ0 .



• WRP is consistent with CH, because it holds if we Levy
collapse a supercompact cardinal to ℵ2.
• WRP is also compatible with ¬CH since WRP follows

from MM, and MM⇒ 2ℵ0 = ℵ2.
• Now we present a characterization of WRP:

Lemma
WRP is equivalent to the following statement:
For any uncountable cardinal η, any stationary S ⊆ [H(η)]ℵ0

and any structure A = 〈H(η),∈, . . .〉 in signature of size
≤ ℵ1, there is M ∈ [H(η)]ℵ1 such that

1 A�M ≺ A;
2 S ∩ [M]ℵ0 is stationary in [M]ℵ0 .



• WRP is consistent with CH, because it holds if we Levy
collapse a supercompact cardinal to ℵ2.
• WRP is also compatible with ¬CH since WRP follows

from MM, and MM⇒ 2ℵ0 = ℵ2.
• Now we present a characterization of WRP:

Lemma
WRP is equivalent to the following statement:
For any uncountable cardinal η, any stationary S ⊆ [H(η)]ℵ0

and any structure A = 〈H(η),∈, . . .〉 in signature of size
≤ ℵ1, there is M ∈ [H(η)]ℵ1 such that

1 A�M ≺ A;
2 S ∩ [M]ℵ0 is stationary in [M]ℵ0 .



• WRP is consistent with CH, because it holds if we Levy
collapse a supercompact cardinal to ℵ2.
• WRP is also compatible with ¬CH since WRP follows

from MM, and MM⇒ 2ℵ0 = ℵ2.
• Now we present a characterization of WRP:

Lemma
WRP is equivalent to the following statement:
For any uncountable cardinal η, any stationary S ⊆ [H(η)]ℵ0

and any structure A = 〈H(η),∈, . . .〉 in signature of size
≤ ℵ1, there is M ∈ [H(η)]ℵ1 such that

1 A�M ≺ A;
2 S ∩ [M]ℵ0 is stationary in [M]ℵ0 .



Stationary Logics-1

Define the weak second order logic Lℵ0 as follows:
• first order variables (lowercase letters) x , y , z , . . .;
• weak second order variables (capital letters) X ,Y ,Z , . . .

to be interpreted as countable subsets of the underlying
set of a structure;
• first order quantifiers ∀x ,∃x ;
• we introduce in this logic the symbol “ε”:
xεX shall be interpreted as x ∈ X , and it must be used
with a first and a second order variable respectively.

Define also Lℵ0,II by adding the second order quantifiers
∀X ,∃Y to Lℵ0 .
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Stationary Logics-2
Now define Lℵ0

stat by adding to Lℵ0 a new quantifier “statX ” for
second order variables to be interpreted as follows:
Let ϕ be an Lℵ0

stat-formula. statXϕ(X ) means that ϕ holds for
stationary many X , i.e. given a structure A = 〈A, . . .〉 we
define

A |= “ statXϕ(X ) ”
m

{B ∈ [A]ℵ0 : A |= “ ϕ(B) ”} is stationary in [A]ℵ0

In Lℵ0
stat we can also define aaX (for almost all X) the dual

quantifier for statX . aaXϕ(X ) is an abbreviation for
¬statX¬ϕ(X ). In other words:

A |= “ aaXϕ(X ) ”
m

{B ∈ [A]ℵ0 : A |= “ ϕ(B) ”} contains a club subset of [A]ℵ0
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L-elementary substructure

Let L be a logic (or family of formulas in a logic), structures
A,B in the same signature, B ⊆ A. We say that

B ≺L A

(B is an L-elementary substructure of A) iff: for all formulas
ϕ(x0, . . . , xn,X0, . . . ,Xm) in L, for all b0, . . . , bn first order
objects of B, all B0, . . . ,Bm second order objects of B, we
have

B |= “ ϕ(b0, . . . ,B0, . . .) ” ⇔ A |= “ ϕ(b0, . . . ,B0, . . .) ”



Weaker notion

Similarly, we write
A ≺−L B

iff for all formulas ϕ in L which have only first order free
variables and for all b0, . . . bn first order objects in B, we have

B |= “ ϕ(b0, . . . , bn) ” ⇔ A |= “ ϕ(b0, . . . , bn) ”



Strong Downwards Löwenheim-Skolem reflection

Let L be a logic and µ an infinite cardinal. Define:

SDLS(L, < µ)

For any structure A of countable signature of cardinality ≥ µ,
there is B ≺L A of cardinality < µ.

Similarly, define:

SDLS−(L, < µ)

For any structure A of countable signature of cardinality ≥ µ,
there is B ≺−L A of cardinality < µ.

This gives us a variety of different reflection statements.
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Example
SDLS−(Lℵ0 , < ℵ1) is just the usual Downward
Löwenheim-Skolem Theorem for the first order logic, and thus
holds in ZFC.

Example
SDLS−(Lℵ0,II, < ℵ2) implies CH.

Rough idea: we can use the following “trick” to code second
order objects into first order objects. Consider the structure
A = 〈ω ∪ P(ω), ω,E 〉, where E = {〈n, a〉 : n ∈ a ⊆ ω}.
Consider also the formula

ψ = ∀X (X ⊂ ω → ∃x∀n ∈ ω(nεX ↔ nEx))

Clearly A |= “ ψ ” . By SDLS−(Lℵ0,II, < ℵ2), there is some
B ≺−Lℵ0,II A (B = 〈B , . . .〉, |B | < ℵ2) such that B |= “ ψ ”.
Then P(ω) ⊆ B , thus 2ℵ0 < ℵ2.
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Actually, we have much more:

Lemma
In ZFC, the following are equivalent:

1 CH;
2 SDLS(Lℵ0 , < ℵ2);
3 SDLS−(Lℵ0,II, < ℵ2);
4 SDLS(Lℵ0,II, < ℵ2);

Lemma

• (Magidor, 2016) SDLS−(Lℵ0
stat, < ℵ2) implies FRP;

• SDLS−(Lℵ0
stat, < ℵ2) implies WRP.

• GRPω<κ (Game Reflection Principle by Bernard König)
implies SDLS(Lℵ0,II

stat , < κ).
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SDLS−(Lℵ0
stat, < κ) and the continuum

Therefore we have

SDLS−(Lℵ0
stat, < ℵ2)⇒ WRP⇒ 2ℵ0 ≤ ℵ2

Similarly to WRP, SDLS−(Lℵ0
stat, < ℵ2) is compatible with both

2ℵ0 = ℵ1 and 2ℵ0 = ℵ2.
Furthermore, for κ > ℵ2, SDLS−(Lℵ0

stat, < κ) imposes a stricter
restriction to the size of the continuum:

Lemma
For any κ > ℵ2, SDLS−(Lℵ0

stat, < κ) implies 2ℵ0 < κ.

In particular, since SDLS(Lℵ0 , < ℵ2)⇔ CH, we have :

Corollary
For any κ ≥ ℵ2, SDLS(Lℵ0

stat, < κ) implies 2ℵ0 < κ.
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Recall the previous characterization of WRP:

WRP equivalent to:
For any uncountable cardinal λ, stationary S ⊆ [H(λ)]ℵ0 and
structure A = 〈H(λ),∈, . . .〉 in signature of size ≤ ℵ1, there is
M ∈ [H(λ)]ℵ1 such that

1 A�M ≺ A;
2 S ∩ [M]ℵ0 is stationary in [M]ℵ0 .

We now present some reflection statements which can also
characterize some of the SLDS statements.
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Diagonal Reflection Principle

(∗)<κ is a variation of the following principle introduced by
Sean Cox.
Let C be a class of sets of cardinality ℵ1 and θ > ℵ1 be a
cardinal of uncountable cofinality.
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There are stationarily many M ∈ [H((θℵ0)+)]ℵ1 such that
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(∗)<ℵ2 ⇔ DRP(θ, ICω1) holds for all regular θ ≥ ℵ2

where ICω1 is the class of all internally club sets of size ℵ1.
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1 Stationary Logic and reflection principles

2 Consistency Result



Consistency Result
Notice that SDLS(Lℵ0

stat, < 2ℵ0) is always false (thus (∗)+
<2ℵ0 is

also false). However the weaker principle (∗)−
<2ℵ0 is consistent.

Actually, we have a simple example of a model W such that

W |= “ (∗)+≤2ℵ0 ∧ (∗)−
<2ℵ0 ” .

Proof.

• Start assuming V |= “ MM ∧ ∃λ supercompact cardinal ” ;
• MM implies 2ℵ0 = ℵ2 and also implies (∗)−<ℵ2

;
• define W := V Col(ω2,<λ). By collapsing λ to become ℵ3

we obtain W |= “ (∗)+<ℵ3
”;

• Col(ω2, < λ) preserves (∗)−<ℵ2
;

• then, indeed W |= “ (∗)−<ℵ2
∧ (∗)+<ℵ3

∧ 2ℵ0 = ℵ2 ” .
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For this proof we needed 2ℵ0 = ℵ2 and (2ℵ0)+ = ℵ3. This rises
the question: is (∗)+≤2ℵ0 ∧ (∗)−

<2ℵ0 consistent with 2ℵ0 being
arbitrarily big? Is it consistent with the continuum having
some large cardinal property?

Yes
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Sketch of the proof

Assume GCH and assume there exists κ < λ supercompact
cardinals. We construct W such that

W |= “ (∗)+≤2ℵ0 ∧ (∗)−
<2ℵ0 ∧ 2ℵ0 carries a σ-saturated ideal ”

We construct W by first adding κ many reals, and then we
collapse λ to κ+. However just simply adding reals (say, with a
Cohen forcing) does not work.
We need to add the reals in a way such that we can extend
some elementary embeddings for κ and λ in some nice
extension.
For this we shall construct a forcing iteration.



Sketch of the proof

Assume GCH and assume there exists κ < λ supercompact
cardinals. We construct W such that

W |= “ (∗)+≤2ℵ0 ∧ (∗)−
<2ℵ0 ∧ 2ℵ0 carries a σ-saturated ideal ”

We construct W by first adding κ many reals, and then we
collapse λ to κ+. However just simply adding reals (say, with a
Cohen forcing) does not work.
We need to add the reals in a way such that we can extend
some elementary embeddings for κ and λ in some nice
extension.
For this we shall construct a forcing iteration.



Sketch of the proof

Assume GCH and assume there exists κ < λ supercompact
cardinals. We construct W such that

W |= “ (∗)+≤2ℵ0 ∧ (∗)−
<2ℵ0 ∧ 2ℵ0 carries a σ-saturated ideal ”

We construct W by first adding κ many reals, and then we
collapse λ to κ+. However just simply adding reals (say, with a
Cohen forcing) does not work.
We need to add the reals in a way such that we can extend
some elementary embeddings for κ and λ in some nice
extension.
For this we shall construct a forcing iteration.



Sketch of the proof

Assume GCH and assume there exists κ < λ supercompact
cardinals. We construct W such that

W |= “ (∗)+≤2ℵ0 ∧ (∗)−
<2ℵ0 ∧ 2ℵ0 carries a σ-saturated ideal ”

We construct W by first adding κ many reals, and then we
collapse λ to κ+. However just simply adding reals (say, with a
Cohen forcing) does not work.
We need to add the reals in a way such that we can extend
some elementary embeddings for κ and λ in some nice
extension.
For this we shall construct a forcing iteration.



Preparation

Let f : κ −→ κ be a Laver function such that
∀ξ < κ, f (ξ) > ξ and for every cardinal η ≥ λ there is an
η-supercompact embedding j : V −→ M for κ such that

j(f )(κ) = λ

Since κ is supercompact, the set

S := {α < κ : α is a Mahlo cardinal and ∀β < α, f (β) < α}

is stationary in κ.
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Rough description of the iteration

We define a mixed support iteration
−→
P = 〈Pα : α ≤ κ〉:

(this iteration is a modification of a construction by Krueger)
• at step α ∈ S , we collapse (via usual Lévy collapse) all

the cardinals between α and f (α);
• at every other step, we add a Cohen real;
• This iteration can be seen as having “two parts”:

1 the Levy collapse part is an Easton support iteration;
2 and the adding Cohen Reals part is a finite support

product.
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Features of Pκ
We have

‖–Pκ “ κ is weakly Mahlo and 2ℵ0 = κ ”

Furthermore, Pκ is designed to have the following property:

Lemma (Key lemma)

For any η ≥ λ, there is an η-supercompact embedding
j : V −→ M with critical point κ such that in M we have:

1 Pκ ∗ Col(κ,< λ)l j(Pκ);
2 ‖–Pκ∗Col(κ,<λ) “ j(Pκ)/ĠPκ∗Col(κ,<λ) is proper ”.

In particular, j(
−→
P ) is an iteration of length j(κ) such that

j(
−→
P )κ+1 = Pκ ∗ Col(κ,< λ).
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Sketch of the proof

• Our final model shall be W := V Pκ∗Col(κ,<λ).
• In W , we have 2ℵ0 = κ and (2ℵ0)+ = λ.
• Since Pκ is small, λ remains supercompact in V Pκ .
• Like we argued before, by collapsing λ to become κ+ we

get W |= “ (∗)+<λ ” .
• By the key lemma, we can extend some supercompact

embedding at κ in some proper extension of W .
• It follows that (∗)−<κ holds in W .

Therefore indeed

W |= “ (∗)+≤2ℵ0 ∧ (∗)−
<2ℵ0 ”



Sketch of the proof

• Our final model shall be W := V Pκ∗Col(κ,<λ).
• In W , we have 2ℵ0 = κ and (2ℵ0)+ = λ.
• Since Pκ is small, λ remains supercompact in V Pκ .
• Like we argued before, by collapsing λ to become κ+ we

get W |= “ (∗)+<λ ” .
• By the key lemma, we can extend some supercompact

embedding at κ in some proper extension of W .
• It follows that (∗)−<κ holds in W .

Therefore indeed

W |= “ (∗)+≤2ℵ0 ∧ (∗)−
<2ℵ0 ”



Sketch of the proof

• Our final model shall be W := V Pκ∗Col(κ,<λ).
• In W , we have 2ℵ0 = κ and (2ℵ0)+ = λ.
• Since Pκ is small, λ remains supercompact in V Pκ .
• Like we argued before, by collapsing λ to become κ+ we

get W |= “ (∗)+<λ ” .
• By the key lemma, we can extend some supercompact

embedding at κ in some proper extension of W .
• It follows that (∗)−<κ holds in W .

Therefore indeed

W |= “ (∗)+≤2ℵ0 ∧ (∗)−
<2ℵ0 ”



Sketch of the proof

• Our final model shall be W := V Pκ∗Col(κ,<λ).
• In W , we have 2ℵ0 = κ and (2ℵ0)+ = λ.
• Since Pκ is small, λ remains supercompact in V Pκ .
• Like we argued before, by collapsing λ to become κ+ we

get W |= “ (∗)+<λ ” .
• By the key lemma, we can extend some supercompact

embedding at κ in some proper extension of W .
• It follows that (∗)−<κ holds in W .

Therefore indeed

W |= “ (∗)+≤2ℵ0 ∧ (∗)−
<2ℵ0 ”



Sketch of the proof

• Our final model shall be W := V Pκ∗Col(κ,<λ).
• In W , we have 2ℵ0 = κ and (2ℵ0)+ = λ.
• Since Pκ is small, λ remains supercompact in V Pκ .
• Like we argued before, by collapsing λ to become κ+ we

get W |= “ (∗)+<λ ” .
• By the key lemma, we can extend some supercompact

embedding at κ in some proper extension of W .
• It follows that (∗)−<κ holds in W .

Therefore indeed

W |= “ (∗)+≤2ℵ0 ∧ (∗)−
<2ℵ0 ”



Sketch of the proof

• Our final model shall be W := V Pκ∗Col(κ,<λ).
• In W , we have 2ℵ0 = κ and (2ℵ0)+ = λ.
• Since Pκ is small, λ remains supercompact in V Pκ .
• Like we argued before, by collapsing λ to become κ+ we

get W |= “ (∗)+<λ ” .
• By the key lemma, we can extend some supercompact

embedding at κ in some proper extension of W .
• It follows that (∗)−<κ holds in W .

Therefore indeed

W |= “ (∗)+≤2ℵ0 ∧ (∗)−
<2ℵ0 ”



Sketch of the proof

• Our final model shall be W := V Pκ∗Col(κ,<λ).
• In W , we have 2ℵ0 = κ and (2ℵ0)+ = λ.
• Since Pκ is small, λ remains supercompact in V Pκ .
• Like we argued before, by collapsing λ to become κ+ we

get W |= “ (∗)+<λ ” .
• By the key lemma, we can extend some supercompact

embedding at κ in some proper extension of W .
• It follows that (∗)−<κ holds in W .

Therefore indeed

W |= “ (∗)+≤2ℵ0 ∧ (∗)−
<2ℵ0 ”



We also sketch the following proof:

Lemma
Assume V |= “ GCH ”. Then:

‖–Pκ∗Col(κ,<λ) “ κ = 2ℵ0 carries a σ-saturated ideal ”

Let j : V −→ M be a λ-supercompact embedding, crit(j) = κ
such that j(f )(κ) = λ, like before.
Let G be a Pκ ∗ Col(κ,< λ)-generic over V .

Lemma
In V [G ], j(Pκ ∗ Col(κ,< λ))/G is a projection of R× S,
where S is ccc and R is < λ+-closed (in M[G ]).
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Let HS be a S-generic over V [G ]. It follows from the
< λ+-closedness of R that

Lemma
There is H ∈ V [G ∗ HS] such that j can be extended into an
elementary embedding J : V [G ] −→ M[G ∗ H].

Therefore, in V [G ], we can prove define

I := {x ⊆ κ : ‖– S “ κ 6∈ J(x) ”}

Since S is ccc, it follows that I is a σ-saturated ideal.
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Let HS be a S-generic over V [G ]. It follows from the
< λ+-closedness of R that

Lemma
There is H ∈ V [G ∗ HS] such that j can be extended into an
elementary embedding J : V [G ] −→ M[G ∗ H].

Therefore, in V [G ], we can prove define

I := {x ⊆ κ : ‖– S “ κ 6∈ J(x) ”}

Since S is ccc, it follows that I is a σ-saturated ideal.



Thank you very much!
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